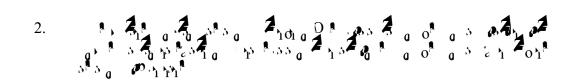

0_ 00

a 5 **f aa**) a 5 5 55 h - 6 **-** ⁵ ⁰ • ha 7 × 5 , **Å** , , , 1 0 0⁷10 **4**56 - 11/1


$$\frac{1}{100} = \frac{1}{100} \frac{$$

- 10. D. $Z_{3,5}$ be $Z_{3,5}$ DZ X_{0} by Z_{4} DZ X_{0} DZ
- 11.

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

- 1. $\sqrt{2}$ $\sqrt{2}$
- 1. $-\frac{1}{2}$ or $\frac{1}{2}$ or
- 13. a^{2} a^{2}
- 1. $\frac{1}{2}$ and $\frac{1}{2}$ an

- D. $(A_1) = (A_1) = ($

$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

۶.

 $\begin{array}{c} \mathbf{Q} & \mathbf{P}_{1} & \mathbf{P}_{2} \\ \mathbf{Q} & \mathbf{P}_{1} & \mathbf{P}_{2} \\ \mathbf{Q} & \mathbf{P}_{1} & \mathbf{Q} \\ \mathbf{Q} & \mathbf{P}_{2} & \mathbf{P}_{2} \\ \mathbf{Q} & \mathbf{P}_$ Ø. $\begin{array}{c} \mathbf{a} \\ \mathbf$ $(i.e., \mathbf{A}_{0}, \mathbf{A}_{0$ $\mathbf{A}^{\mathbf{Y},\mathbf{Y}} = \mathbf{A}^{\mathbf{Y},\mathbf{Y}} = \mathbf{A}^{\mathbf{Y},$ $\mathbf{T}_{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{A}$

oon of a grand a gr NN. 00. D^{2} 1. × 7 aa No a ha hata x 4 ju and a haa o . . 2 so 027 2 2.

R. **2**, 101 a . **()** . $\begin{array}{c} \mathbf{A} & \mathbf{$

•

 $\begin{array}{c} \mathbf{f} & \mathbf{h}_{0} & \mathbf{h}_{0$ 1. 2, , x, 2 , 2 22 10 0 - 1 5. 2. $\begin{array}{c} \mathbf{1} \\ \mathbf{$

 $a \mathbf{A}_{\mathbf{a}} \mathbf{A}_{\mathbf{b}} \mathbf{$ 1. $\frac{1}{2}$ \frac 2. 1 2 $\frac{1}{1} \frac{1}{10} \frac{$ $\begin{array}{c} \mathbf{A}_{\mathbf{a}} = \mathbf{A}_{\mathbf{a$. $\begin{array}{c} \mathbf{A}^{\dagger} \\ \mathbf{A$ 1. 2. $\cdot \qquad \mathbf{A} \quad \mathbf{A}_{0} \quad \mathbf{P}_{10} \quad \mathbf{P}_{$

¥. .

% 2. · a o^p a ^s $\begin{array}{c} \mathbf{x} + \mathbf{z}_{0} + \mathbf{z}_{1} + \mathbf{z}_{0} + \mathbf{z}_{1} + \mathbf{z}_{0} + \mathbf{z}_{1} + \mathbf{z}_{0} + \mathbf{z}_{1} + \mathbf{z}_{0} + \mathbf{z}_{0}$ 1. 2. $\frac{1}{2}$. $\frac{1}{2}$ (10) **4 2** $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ PROVIDED, HOWEVER, $\frac{1}{1}$, $\frac{1}{2}$, \frac

- 3. a o^t a ³ **2.**
 - 1. The set of the set

2. $\sum_{n=1}^{N-1} \sum_{n=1}^{N-1} \sum_{n=1}^{N-$

 $\begin{array}{c} \mathbf{x} + \mathbf{z}_{0} \mathbf{y}^{+} + \mathbf{z}_{0} (1) \mathbf{x}^{+} + \mathbf{z}_{0} \mathbf{y}^{+} \mathbf{z}_{0} \mathbf{y}^{+} \mathbf{z}_{0} \mathbf{y}^{+} \mathbf{z}_{0} \mathbf{y}^{+} \mathbf{z}_{0} \mathbf{y}^{+} \mathbf{z}_{0} \mathbf{z}_{0}$

2. So
$$o^{3} \delta^{\dagger} o^{\dagger} h^{\dagger} h^{\dagger$$

. **Z.** • $\begin{array}{c} 1 & 5 & 5 & 7 \\ a & 0 & a & 5 \\ a & 0 & a & 5 \\ a & 0 & 0 & 5 \\ \end{array}$ **!** . 0 1. $\frac{1}{2} + \frac{1}{2} + \frac{1}$ 2.

$$PROVIDED, HOWEVER_{\Lambda} A_{\Lambda} = A_{\Lambda} A_{\Lambda} = A_{\Lambda} A_{\Lambda} A_{\Lambda} = A_{\Lambda} A_{\Lambda} A_{\Lambda} = A_{\Lambda} A_{\Lambda} A_{\Lambda} = A_{\Lambda} A_$$

2 **,** hà à a ¥. . $\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$ • $\frac{\partial_{1}}{\partial_{2}} \frac{\partial_{1}}{\partial_{1}} = \frac{\partial_{1}}{\partial_{1}} \frac{\partial_{1}}{\partial_{2}} \frac{\partial_{1}}{\partial$ a 'a Noo'1 'a a •

2,

•

S 1 N a , **2**, · •

6).

a of a single a set of the price of the price of the set of the price of the set of the price of the set of t $\frac{1}{2} + \frac{1}{2} + \frac{1}$

. **Z.**

- $= \bigvee \stackrel{h \circ h}{\to} \stackrel{h \to h}{\to}$
- $\begin{array}{c} V(\overset{\circ}{} \overset{\circ}{} \overset{\circ}{}$
 - 1. \mathbf{x}_{a} , \mathbf{y}_{b} , \mathbf{y}_{a} , \mathbf
 - 2. $\sum_{a=0}^{n} \sum_{a=0}^{n} \sum$

 $\begin{array}{c} & (1) \\ & (1)$

. .

 $\begin{array}{c} \mathbf{A} = \mathbf{A} + \mathbf{$

•

