- 《曰》 《國》 《臣》 《臣》 三臣 - - - 오

- March 2010 health reforms include physician ...nancial incentives to control costs in the Medicare and Medicaid programs
 - Accountable Care Organizations share cost savings
 - Physicians receive bundled payments for episodes including hospitalizations
- Goal: cost control without compromising quality
- Similar cost control incentives currently used by health maintenance organizations (HMOs) for private enrollees in California
- Previous papers document lower costs in HMOs compared to other insurers but not the mechanisms used.

This paper: do patients whose physicians have a ...nancial incentive to control costs receive care at lower-priced hospitals?

- A substantial previous literature uses hospital discharge records to estimate models of hospital choice
- Important for regulatory analysis (e.g. hospital mergers and investment)
 - How much do decision-makers value each hospital?
 - How much would the valuation change after merger/investment?
- But previous papers largely ignore impact of price paid by the insurer to the hospital.

• Overview of the Market and the Model

- Why should choices respond to hospital prices?
- How will we estimate price sensitivity?
- The Data
- The Model
 - Multinomial Logit Analysis
 - Inequalities Methodology
- Results and Conclusion

- We utilize hospital discharge data for California in 2003, focus on women in labor
- Dataset does not identify patients' physician groups or details of compensation schemes
- We observe each patient's HMO and percent of each HMO's payments for primary services that are capitated
- Considerable dispersion across insurers
 - Blue Cross: 38% capitated payments
 - Paci...care: 97% capitated payments

Questions: Are hospital choices in‡uenced by price? Does price matter more when th1-49.079353ter

Overview of the Model

Estimate utility of patient/insurer/physician agent making hospital choice:

$$W_{i,\pi,h} = \theta_{p,\pi} \text{ price}_{i,\pi,h} = g_{\pi} q_{h} s$$
, $s_{i} = \theta_{d} d |_{i}$, $l_{h} = \varepsilon_{i,\pi,h}$

price_{i,π,h}

	Mean	Std Devn.
Number of patients	88,157	
Number of hospitals	195	
Teaching hospital	0.27	
List price (\$)	\$13,312	\$13,213
List price*(1-discount)	\$4,317	\$4,596
Length of Stay	2.54	2.39
Died	0.01%	0.004%
Acute Transfer	0.3%	0.02%
Special Nursing Transfer	1.5%	0.04%

11/10 10/2

(日) (同) (三) (三)

Prices and Outcomes By Patient Type

・ ロ ト ・ 通 ト ・ 言 ト ・ 目 ・ う へ ()・

・ 日 ト ・ 画 ト ・ 画 ト ・ 目 ・ う へ ()・

Econometrician prediction of utility from i, π , h is

 $U_{i,\pi,h} \quad \theta_{p,\pi} \,\, \delta_{\pi,h} Ip \,\, c_i \,, \, h \qquad g_\pi \,\, q_h \,\, s \,\, , \, s_i \qquad \theta_d \, d \,\, I_i \,, \, I_h$

- s_i, c_i much more detailed than logit equivalents
- $g_{\pi} q_h s$, s_i interacts severity dummies with hospital F.E.s
- 106 populated groups x 157 hospitals
- \bullet Assumption: g_π . absorbs all unobservables known to decision-maker that a¤ect hospital choice
- Remaining unobservable is measurement error s.t. E $\epsilon_{i,\pi,h} j l_{i,\pi} = 0$:

$$W_{i,\pi,h} = heta_{p,\pi} \, \delta_{\pi,h} I p \, c_i$$
 , $h = g_{\pi} \, q_h \, s$, $s_i = d \, I_i$, $I_h = \varepsilon_{i,\pi,h}$

Identifying assumption: for every patient i_h , utility from chosen hospital h = that from any alternative h^0

Notation:

$$W i_h, h, h^0 = W_{i_h, \pi, h} = W_{i_h, \pi, h^0} = 0.$$

Intuition: ...nd all pairs of same- π , same-s, dimension patients i_h, i_{h⁰} s.t.:

- i_h visited h and had alternative h⁰
- $\bullet~i_{h^0}$ visited h^0 and had alternative h

Sum their inequalities. Equal and opposite g_{π} . terms drop out. .io380cm0g

Ho and Pakes ()

6

Add price instruments:

			Dist insts		Add price insts	
_	% capitated	Discharges	$[heta_{ extsf{LB}}$,	$ heta_{\sf UB}$	$[heta_{ ext{LB}}$,	$ heta_{\sf UB}$
Pacicare	0.97	15,479	[-,	-0.74]	[-1.62,	-0.74]
Aetna	0.91	6,291	[-,	-1.07]	[-3.60,	-1.07]
Health Net	0.80	16,950	[-,	-0.34]	[-2.05,	-0.34]
Cigna	0.75	8,097	[2.17,	-]	[2.17,	1.50]
Blue Shield	0.57	16,302	[-1.26,	4.18]	[-0.51,	1.38]
Blue Cross	0.38	25,038	[-,	2.04]	[-2.79,	1.44]

< 🗇 🕨 < 🖻 🕨 < 🖻

۲

		Logits	Inequalities
		(less-sick patients)	(all patients)
Insurer	% cap	elasticity	min. elasticity
Pacicare	0.97	-0.25	-4.11
Health Net	0.80	-0.12	-1.88

• Ineqs: results implied by U.B. of θ_{LB} , θ_{UB} if logits otherwise correct