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Abstract

The theoretical literature of industrial organization shows that the distances be-
tween consumers and firms have first-order implications for competitive outcomes
whenever transportation costs are large. To assess these effects empirically, we de-
velop an estimator for models of spatial differentiation and spacial price discrimination
that recovers the underlying structural parameters using only aggregate data. We pro-
vide conditions under which the estimates are consistent and asymptotically normal.
We apply the estimator to the portland cement industry. The estimation fits, both



1 Introduction

In many industries, firms are geographically differentiated and transportation is costly. Yet

few empirical studies estimate structural models of spatial differentiation. We attribute

this dearth of research to a simple data availability problem: the most straight-forward

way to identify the degree of spatial differentiation – or, equivalently, the magnitude of

transportation costs – is to measure how firms’ market shares differ between nearby and

distant consumers. But this requires data on the geographic distributions of the market

shares. These data are difficult to attain and, indeed, we are unaware of any study that

exploits variation in market shares over geographic space.

The data availability problem is only exacerbated for industries characterized by spatial

price discrimination because it becomes necessary to account for the geographic distributions

of the prices, as well. While three recent studies apply econometric techniques to sidestep the

data availability problem in non-discriminatory settings (Thomadsen (2005), Davis (2006),



normal. We also conduct an empirical application and demonstrate that (1) estimation is



markets.4 These assumptions preclude inference regarding spatial differentiation because

the transportation cost cannot be estimated structurally. Further, markets tend to be delin-

eated based on political borders of questionable economic significance such as state or county

lines. Yet this approach has been employed routinely to study of industries characterized by

high transportation costs, including ready-mix concrete (e.g., Syverson (2004), Syverson and

Hortaçsu (2007), Collard-Wexler (2009)), portland cement (e.g., Salvo (2008), Ryan (2009)),

and paper (e.g., Pesendorfer (2003)).5

In the empirical application, we examine the portland cement industry in the U.S.

Southwest over the period 1983-2003. The available data include average prices, production,





the geographic distribution of market shares at each candidate parameter vector. (These

market shares have convenient analytical solutions given the assumed logit demand func-

tion.) The estimation procedure then selects the parameters that bring the implied equi-

librium firm-level prices close to the data. By contrast, Davis (2006) and McManus (2009)

exploit variation in firm-level prices and sales. They derive predicted sales in a number of



3 The Model of Price Competition

3.1 The geographic space

We define the relevant geographic space to be a compact, connected set C in the Euclidean

space R2. We take as given that J plants compete in the space, and assume that each plant

is endowed with a fixed location defined by the geographic coordinates {z1, z2, . . . , zJ}, where

zj ∈ C. We further take as given that a continuum of consumers spans the space, and assume

that each consumer has unit demand and a fixed location w ∈ C. The absolute measure

ϕ(w) characterizes the geographic distribution of consumers and we define M =
∫
C ϕ(w)dw



quantity produced by plant j, and c(Q; wj, θ0



Figure 1: A Geographic Space.



of Ω builds on the premises that (1) consumers in each area Cn select among all J plants,

and (2) demand in area Cn is unaffected by mill prices in area Cm for n ̸= m.

We now rearrange and stack the first-order conditions:

f(p; ζ, θ0) ≡ p − c(Q(p; ζ, θ0); ζ, θ0) + Ω−1(p; ζ, θ0)q(p; ζ, θ0) = 0. (6)

A vector of prices that solves this system of equations is a spatial Bertrand-Nash equilibrium.

We define a mapping H(θ0; ζ) : RK → RJN that matches the parameters of the model to

spatial Bertrand-Nash equilibrium given the exogenous data. Formally, the mapping is

defined by the equivalence f(H(θ0; ζ); ζ, θ0) ≡ 0.

3.4 Discussion

We offer three comments to help build intuition on the economics of the model. First,

spatial price discrimination is at the core of the firm’s pricing problem: firms charge higher

mill prices to nearby consumers and to consumers for whom the firm’s competitors are

more distant. However, aside from price discrimination, the firm’s pricing problem follows

standard intuition. A firm that contemplates a higher mill price from one of its plants to

a given area must evaluate (1) the tradeoff between lost sales to marginal consumers and

greater revenue from inframarginal consumers; and (2) whether the firm would recapture

lost sales with its other plants. If marginal costs are not constant, then the firm must also

evaluate how the lost sales would affect the plant’s competitiveness in other areas.

Second, the areas C1,C2, . . .CN are best interpreted as determining the extent which

firms engage in spatial price discrimination. Finer partitions of the geographic space correlate

with more sophisticated discrimination, and if only a single area exists (i.e., N = 1) then firms

do not discriminate. The areas have no economic significance aside from these implications

for spatial price discrimination. Since every plant competes in every area, the partition of

the geographic space into distinct areas does not artificially limit competition and is not

analogous to a “market delineation” assumption under which plants compete only within

prescribed geographic boundaries.

Finally, the indirect utility specification of equation (2) implies that plants are differen-

tiated by both location and idiosyncratic preferences shocks. In the special case of degenerate

preference shock distribution, the model collapses to a “pure characteristics model” along

the lines of the original Hotelling (1929) formulation. Although the estimation strategy we

outline below accommodates the pure characteristics model on a theoretical level, we suspect
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already placed on the model. As long as the distributions of ν∗
ijt are known, or reasonable

approximations can be made, compute demand can be computed given the relevant prices

and the mean distances between plants and areas. We formalize this in Assumption A2.

Assumption A2: The econometrician knows the distributions of ν∗
ijt.

Integrating over this distribution yields an equilibrium mapping H(θ0; ζt) that depends

on mean distances and the demand and cost shifters. We assume that the price data are

generated by the following process:

pϵ
t = H(θ0; ζt) + ϵt, (8)

where pϵ
t is a vector of length JN , and Tf 32.54 0 Td[(p)]T1t



reasonable to further assume that the sampling error is independent of the “right-hand-side”

data ζt. This simplifies the construction of the estimator, and we impose the additional

assumption here:

Assumption A4′: The sampling error is mean zero conditional on ζt:

E[pd
t − S(H(θ0; ζt))| ζt] = 0.

A4′ enables estimation with multiple equation nonlinear least squares, which is equivalent

to GMM with the optimal instruments

Zt = −∂S(H(θ0; ζt))

∂θ0

Λ0(θ0)
−1, (10)

where Λ0(θ0) ≡ E[S(ϵt)|ζt]E[S(ϵt)|ζt]
′ is the variance matrix of the aggregated error terms.

Thus, the sample moment equations that correspond to A4′ are

1

T

T∑
t=1

−∂S(H(θ; ζt))

∂θ
C−1

T (pd
t − S(H(θ; ζt))), (11)

where CT is some consistent estimate of Λ0(θ0) and θ is a candidate parameter vector

defined within the compact subspace Θ.

We come now to the central methodological contribution of the paper. Estimation

based on the sample moments of equation (11) requires knowledge of equilibrium prices at

the plant-area level (i.e., H(θ; ζt)). Yet the data generating process provides only prices

that are aggregated and measured with error. The solution to this dilemma lies in numerical

approximations to equilibrium. Conceptually, it is possible to compute the equilibrium price

vector for any number of candidate parameter vectors, and then identify the candidate

parameter vector that minimizes the “distance” between the aggregated equilibrium price

vectors and the data. The power of modern computers makes this procedure feasible given a

convenient distribution of the composite error term (ν∗
ij in equation (7)). In our application,

we are typically able to numerically compute a vector, call it H̃(θ; ζt), that satisfies the

first-order conditions of equation (6) to computer precision in a matter of seconds.
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The GMM estimate that utilizes these numerical approximations is:

θ̂ = arg min
θ∈Θ

1

T

T∑
t=1

[pd
t − S(H̃(θ; ζt))]

′C−1
T [pd

t − S(H̃(θ; ζt))]. (12)

We think it is intuitive to think of the estimation procedure as combining an outer loop and

an inner loop. In the outer loop, the objective function is minimized over the parameter

space, whereas in the inner loop equilibrium is computed numerically for each candidate

parameter vector considered. This structure makes our estimator broadly analogous to

other estimators developed for discrete static games (e.g., Bajari, Hong, and Ryan (2008)),

non-strategic dynamic games (e.g., Rust (1987)) and certain strategic dynamic games (e.g.,

Goettler and Gordon (2009), and Gallant, Hong, and Khwaja (2010)), in the sense that each

requires the repeated computation of equilibrium.

4.2 Asymptotic properties

The asymptotic properties of the GMM estimator are unclear without further assumptions,

which we develop now:

Assumption A5: A unique Bertrand-Nash equilibrium exists, and the prices that support

it are strictly positive. Formally, for any θ ∈ Θ there exists a vector p1 ∈ RJN
+ such that

f(p1; ζt, θ) = 0. Further, f(p1; ζt, θ) = f(p2; ζt, θ) = 0 ↔ p1 = p2.

A5 ensures that the GMM objective function is well-behaved.11 We suspect that

uniqueness alone may suffice if, for instance, the econometrician can compute multiple equi-

libria and select the equilibrium closest to the data (e.g., as in Bisin, Moro, and Topa (2010)).

We defer the evaluation of such possibilities to further research. The following lemma clari-

fies that, given the assumptions of the model, small changes to the parameter vector do not

produce large jumps in the objective function:

Lemma 1: The function S(H(θ; ζt)) is continuously differentiable in θ and yt for θ ∈ Θ,

where yt is the vector representation of ζt.

Proof. See appendix A.

11Recent theoretical contributions demonstrate that A5 holds for two special cases of our model: nested
logit demand, convex marginal costs, and single-plant firms (Mizuno 2003), and logit demand, sufficiently
increasing marginal costs, and multi-plant firms (Konovalov and Sándor 2010). The assumption is not
satisfied generally (e.g., Caplin and Nalebuff (1991)).
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Assumption A6: The parameter vector θ0 is globally identified in Θ. Formally, E[pd
t −

S(H(θ; ζt))|ζt] = 0 ↔ θ = θ0.

A6 could be violated even if parameters of the model would be globally identified given

disaggregate data (i.e., even if E[pϵ
t − H(θ; ζt)|ζt] = 0 ↔ θ = θ0). Such a scenario may

be more likely when aggregation is particularly coarse. Empirically, it may be possible to

evaluate (imperfectly) the potential for this sort of aggregation problem using artificial data

experiments, and we develop one such test in our application.

The asymptotic properties of the GMM estimator follow directly from A1-A6 and the

other assumptions placed on the data generating process:

Theorem 1: Under A1-A6 and certain regularity conditions enumerated in the appendix,

i) θ̂ →p θ0 and

ii)
√

T (θ̂ − θ0) →d N(0, V ),

where V = (G′
0C0G0)

−1G′
0C0Λ0C0G0(G

′
0C0G0)

−1 and G0 ≡ −E[∂S(H(θ; ζt))/∂θ′].

Proof. See appendix A.

4.3 Incorporating non-price data

The estimation strategy can be extended to exploit variation in other endogenous data, such

as observations on production or consumption, that are often available to the econometrician.

We focus on production data for expositional brevity; the other extensions are analogous.

We assume the data are generated by:

qϵ
t = q(H(θ0; ζt); ζt, θ0)) + ϵ∗

t , (13)

where qϵ
t is a vector of length JN , and ϵ∗

t is a vector of unobserved sampling errors. We

define a linear function R : RJN → RL∗
that maps the plant-area quantities to the aggregate

production vector, which we denote as qd
t . We assume that the aggregate sampling error is

mean zero conditional on the exogenous data:

E[qd
t − R(q(H(θ0; ζt); ζt, θ0))| ζt] = 0. (14)
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The GMM estimate that incorporates these data is:

θ̂
∗

= arg min
θ∈Θ

1

T

T∑



Some details of the production process motivate the marginal cost specification we

introduce below. Cement plants are typically adjacent to a limestone quarry. The limestone

is fed into coal-fired rotary kilns that reach peak temperatures of 1400-1450◦ Celsius. The

output of the kilns – clinker – is cooled, mixed with a small amount of gypsum, and ground

in electricity-powered mills to form portland cement. Kilns operate at peak capacity with

the exception of an annual maintenance period. When demand is particularly strong, man-

agers sometimes forego maintenance at the risk of breakdowns and kiln damage. Consistent

with these stylized facts, a recent report prepared for the Environmental Protection Agency

identifies five main variable input costs of production: raw materials, coal, electricity, labor,

and kiln maintenance (EPA (2009)).

5.2 The geographic space

We focus on California, Arizona, and Nevada over the period 1983-2003. We refer to these

three states as the “U.S. Southwest” for expositional convenience. Figure 2 maps the ge-

ographic configuration of the industry in the U.S. Southwest circa 2003. Most plants are

located along an interstate highway, nearby one or more population centers. Some firms

own multiple plants but ownership is not particularly concentrated – the capacity-based

Herfindahl-Hirschman Index (HHI) of 1260 is well below the threshold level that defines

highly concentrated markets in the 1992 Merger Guidelines. The figure also plots the four

customs offices through which foreign imports enters the region – San Francisco, Los Ange-

les, San Diego, and Nogales. Most cement imported into the region is produced by large,



Figure 2: Portland Cement Production Capacity in the U.S. Southwest circa 2003.

imports. The similarity of the two imports measures we plot in Figure 3 – actual foreign

imports and consumption minus production (“apparent imports”) – reveals that net trade

flows between the U.S. Southwest and other domestic regions are negligible. Other statistics

published by the USGS are strongly suggestive that gross trade flows are also negligible.
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Figure 3: Consumption, Production, and Imports of Portland Cement. Apparent imports are defined as
consumption minus production. Observed imports are total foreign imports shipped into San Francisco, Los
Angeles, San Diego, and Nogales.

Census response rates are typically well over 90 percent, and the USGS staff imputes missing

values for non-respondents based on historical and cross-sectional information.16 The USGS

aggregates the census data to the “regional” level before their publication in the Minerals

Yearbook in order to protect the confidentiality of survey respondents. We observe the

following endogenous data:

• Average mill prices (weighted by production) charged by plants in each of three regions:

Northern California, Southern California, and a single Arizona-Nevada region.

• Total production by plants in the same three regions.

• Consumption in each of four regions: Northern California, Southern California, Ari-

zona, and Nevada.

We also rely on the Minerals Yearbook for information on the price and quantity of portland

cement that is imported into the U.S. Southwest.

We make use of more limited data on cross-region shipments from the California Let-

ter, a second annual publication of the USGS. The level of aggregation varies over the

16The quality of the census has long generated interest among researchers. Other academic studies that
feature USGS data include McBride (1983), Pnian(t)-1.36 l S Q BT /F12 6.9i(1983.



sample period, some data are redacted to protect sensitive information, and no information

is available before 1990. For instance, we observe shipments from producers in California

(Northern and Southern) to consumers in Northern California over 1990-2003, but shipments

from California to Nevada only over 2000-2003. There are 96 data points in total.

The Plant Information Survey (PIS), an annual publication of the Portland Cement

Association, provides the geographic location of each portland cement plant as well as the



We augment the theoretical model by letting domestic plants compete against a com-

petitive fringe of foreign importers, which we denote as “plant” J + 1. We place the fringe

in geographic space at the four customs offices of the U.S. Southwest. Consumers pay the

door-to-door cost of transportation from these customs offices. We rule out spatial price dis-

crimination on the part of the fringe, consistent with perfect competition among importers,

and assume that the import price is set exogenously (e.g., based on the marginal costs of the

importers or other considerations). Thus, the supply specification is capable of generating



collapses to a standard logit in the latter case. The demand parameters to be estimated are

(βc, βp, βd, βi, λ) ∈ θ0.
17

The nested logit structure yields well-known analytical expressions for the quantity of

cement that each plant sells to each area (i.e., qjnt(pnt; ζt, θ)) and helps make estimation fea-

sible from a computational standpoint. Nonetheless, the structure introduces some tension

between the theoretical model and the empirical specification. Recall that the composite er-

ror term ν∗
ijt incorporates both an idiosyncratic preference shock and the consumer-specific

deviation from mean distance (e.g., equation (7)). Since the deviation from mean distance is

not independently distributed neither is the composite error.18 The relevance of this discrep-

ancy depends on how much of the variation in the composite error term is due to variation in

deviations from mean distance. There should be less tension between the theoretical model

and the empirical specification when areas are small, and more tension when areas are large

or preference shocks are degenerate (e.g., as in the “pure characteristics model”).

6.1.3 Areas and potential demand

We define 90 consumer areas based on the counties of the U.S. Southwest. The choice

implies relatively fine spatial price discrimination and enables us to model the geographic

distribution of demand using commonly-available data at the county level. We normalize

potential demand using exogenous demand factors, following standard practice for discrete-

choice systems (e.g., Berry, Levinsohn, and Pakes (1995), Nevo (2001)). The two factors we

select are the number of construction employees and the number of new residential building

permits. Thus, we implicitly assume that construction spending is unaffected by cement

prices, consistent with the fact that that portland cement composes only a small fraction of

total construction expenditures.19

17The substitution patterns between cement plants are characterized by the independence of irrelevant
alternatives (IIA) within the inside good nest. IIA may be a reasonable approximation for our applica-
tion. Portland cement is purchased nearly exclusively by ready-mix concrete plants and other construction
companies. These firms employ similar production technologies and compete under comparable demand
conditions. Thus, we are skeptical that meaningful heterogeneity exists in consumer preferences for plant
observables (e.g., price and distance). Without such heterogeneity, the IIA property arises quite naturally –
for example, the random coefficient logit demand model collapses to standard logit when the distribution of
consumer preferences is degenerate.

18For a given consumer, the deviations from distance can be positively or negatively correlated. For
instance, consider two plants located on either side of an area: a consumer that is closer to the first plant is
farther from the second plant. But if the two plants are on the same side then a consumer that is closer to
the first plant is also closer to the second plant.

19Syverson (2004) makes a similar argument for ready-mix concrete, which accounts for only two percent of
total construction expenses according the 1987 Benchmark Input-Output Tables. The cost share of portland
cement (an input to concrete) must be even lower.
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To perform the normalization, we regress regional portland cement consumption on

the demand predictors (aggregated to the regional level), impute predicted consumption at

the county level based on the estimated relationships, and then scale predicted consumption

by a constant of proportionality to obtain potential demand.20 The results indicate that

potential demand is concentrated in a small number of counties. In 2003, the largest 20

counties account for 90 percent of potential demand, the largest 10 counties account for

65 percent of potential demand, and the largest two counties – Maricopa County and Los

Angeles County – together account for nearly 25 percent of potential demand. In the time-

series, potential demand more than doubles over 1983-2003, due to greater activity in the

construction sector and the onset of the housing bubble.

6.2 Estimation



in region r. Then the aggregated regional-level metrics take the form:

p̃rt(θ; ζt) =
∑
j∈ȷr

∑
n

q̃jnt(θ; ζt)∑
j∈ȷr

∑
n q̃jnt(θ; ζt)

p̃jnt(θ; ζ)

q̃rt(θ; ζt) =
∑
j∈ȷr

q̃jnt(θ; ζt), (19)

c̃rt(θ; ζt) =
∑

j

∑
n∈ℵr

q̃jnt(θ; ζt),

where p̃rt(θ; ζt) is the production-weighted average mill price, q̃rt(θ; ζt) is total production,

and c̃rt(θ; ζt) is total consumption. We calculate regional prices and quantities for Northern

California, Southern California, and the combined Arizona-Nevada region, and calculate

regional consumption for Northern California, Southern California, Arizona, and Nevada.

We also exploit information on aggregated cross-region shipments to help identify the

model.22
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Table 1: Artificial Data Test for Identification

Variable Parameter Truth (θ) Transformed (θ̃) Mean Est RMSE



the standard deviation of each equilibrium price across the eleven starting points. (So

there are 1,260 standard deviations for a typical equilibrium price vector of 1,260 plant-area

elements.) The results indicate that the maximum standard deviation, over all candidate

parameter vectors and all plant-area prices, is zero to computer precision. Thus, the Monte

Carlo experiment finds no evidence of multiple equilibria. This may be unsurprising because,

theoretically, uniqueness is ensured for two close cousins of our model: nested logit demand,

convex marginal costs, and single-plant firms (Mizuno 2003), and logit demand, sufficiently

increasing marginal costs, and multi-plant firms (Konovalov and Sándor 2010).

6.5 Key empirical relationships

Although the estimation routine relies on strong functional form assumptions on demand

and marginal costs, it is nonetheless possible to visualize the key empirical relationships that

drive the parameter estimates. We explore these relationships in Figure 4.

On the demand side, the price coefficient is primarily determined by the relationship

between the consumption and price moments. In panel A, we plot cement prices and the ratio

of consumption to potential demand (“market coverage”) over the sample period. There is

weak negative correlation, consistent with downward-sloping but inelastic aggregate demand.

Next, the distance coefficient is primarily determined by (1) the cross-region shipments

moment, and (2) the relationship between the consumption and production moments. We

plot the gap between production and consumption (“excess production”) for each region in

panel B. In many years, excess production is positive in Southern California and negative

elsewhere, consistent with inter-regional trade flows. The magnitude of these implied trade

flows drives the distance coefficient. Interestingly, the implied trade flows are higher later in

the sample, when the diesel fuel is less expensive.

On the supply side, the parameters on the marginal cost shifters are primarily deter-

mined by the price moments. In panel C, we plot the coal price, the electricity price, the

durable-goods manufacturing wage, and the crushed stone price for California. Coal and

electricity prices are highly correlated with the cement price (e.g., see panel A), consistent

with a strong influence on marginal costs; inter-regional variation in input prices helps dis-

entangle the two effects. It is less clear that wages and crushed stone prices are positively

correlated with cement prices. Finally, the utilization parameters are primarily determined

by (1) the relationship between the production moments (which determine utilization) and

the consumption moments, and (2) the relationship between the production moments and

the price moments. We explore the second source of identification in panel D, which shows

26
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Figure 4: Empirical Relationships in the U.S. Southwest. Panel A plots average cement prices and market
coverage. Prices are in dollars per metric tonne and market coverage is defined as the ratio of consumption
to potential demand (times 100). Panel B plots excess production in each region, which we define as the gap
between between production and consumption. Excess production is in millions of metric tonnes. Panel C
plots average coal prices, electricity prices, durable-goods manufacturing wages, and crushed stone prices in
California. For comparability, each time-series is converted to an index that equals one in 2000. Panel D
plots the average cement price and industry-wide utilization (times 100).

cement prices and industry-wide utilization over the sample period. The two metrics are

negatively correlated over 1983-1987 and positively correlated over 1988-2003.

7 Empirical Results

7.1 Demand estimates and transportation costs

Table 2 presents the parameter estimates of the GMM procedure. The price and distance

coefficients are the two primary objects of interest on the demand side; both are negative and

precisely estimated.26 The aggregate elasticity implied by the price coefficient is −0.16 in the

26The other demand parameters take reasonable values and are precisely identified. The negative coefficient
on the import dummy is likely due to the fact that observed import prices do not reflect the full price of
imported cement (see Appendix D). The inclusive value coefficient suggests that consumer tastes for the

27



Table 2: Estimation Results

Variable Parameter Estimate St. Error

Demand
Cement Price βp -0.087 0.002
Miles×Diesel Price βd -26.42 1.78
Import Dummy βi -3.80 0.06
Intercept βc 1.88 0.08
Inclusive Value λ 0.10 0.004

Margina5 Tfi-.10

Margina5 Tfi-.10



Figure 5: Equilibrium Prices and Market Shares for the Clarksdale Plant in 2003. The Clarksdale plant is
marked with a star, and other plants are marked with circles.

find that portland cement is shipped an average of 92 miles, that 75 percent of portland

cement is shipped under 110 miles, and that 90 percent is shipped under 175 miles.28

Firms appear to exercise some degree of localized market power. To illustrate, we

map the prices and market shares of the Clarksdale plant that correspond to numerical

equilibrium in Figure 5. We mark the location of the Clarksdale plant with a star, and mark

other plants with circles. As shown, the Clarksdale plant captures more than 40 percent

of the market in the central and northeastern counties of Arizona. It charges consumers

in these counties its highest prices, typically $80 per metric tonne or more. Both market

shares and prices are lower in more distant counties, and in many counties the plant captures

less than one percent of demand despite steep discounts. The locations of competitors also

influence market share and prices, though these effects are more difficult to discern.

We explore these relationships more rigorously with regression analysis. We regress

prices and market shares on three independent variables: (1) the distance between the plant

and the county, (2) the distance between the county and the nearest other domestic plant,

28The average shipping distance fluctuates between a minimum of 72 miles in 1983 and a maximum of 114
miles in 1998, and is highly correlated with the diesel price index.
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and (3) the estimated marginal cost of the plant. Among plant-county pairs within 100

miles, a 10 percent reduction in distance is associated with prices and market shares that

are 0.9 percent and 14 percent higher, respectively; and a 10 percent reduction in the distance

separating the county from its the closest alternative is associated with prices and market

shares that are 0.7 percent and 11 percent lower, respectively. Each of these patterns is

statistically significant at the one percent level.29

7.2 Marginal cost estimates

We estimate marginal costs to be $69.40 in the mean plant-year (weighted by production). Of

these marginal costs, $60.50 is attributable to costs related to coal, electricity, labor and raw

materials, and the remaining $8.90 is attributable to high utilization rates. Integrating the

marginal cost function over the levels of production that arise in numerical equilibrium yields

an average variable cost of $51 million. Virtually all of these variable costs – 98.5 percent – are

due to coal, electricity, labor and raw materials, rather than due to high utilization. Thus,

although capacity constraints may have substantial affects on marginal costs, the results

suggest that their cumulative contribution to variable costs can be minimal. Taking the

accounting statistics further, we calculate that the average plant-year has variable revenues

of $73 million and that the average gross margin (variable profits over variable revenues) is

0.32. As argued in Ryan (2009), margins of this magnitude may be needed to rationalize

entry given the sunk costs associated with plant construction.30,31

Finally, we discuss the individual parameter estimates shown in Table 2, each of which

deviates somewhat from production data available from the Minerals Yearbooks and EPA

(2009). To start, the coal parameter implies that plants burn 0.64 tonnes of coal to produce

one tonne of cement, whereas in fact plants burn roughly 0.09 tonnes of coal to produce

each tonne of cement. The electricity parameter implies that plants use 228 kilowatt-hours

per tonne of cement, whereas the true number is closer to 150. Each tonne of cement

requires approximately 0.34 employee-hours yet the parameter on wages is essentially zero.

29We refer the readers to the working paper for more details on this regression.
30Lafarge North America, one of the largest domestic producers, reports an average gross margin of 0.33
over 2002-2004 in its public accounting records.

31Fixed costs are well understood to be important for production, as well. The trade journal Rock Prod-
ucts reports that high capacity portland cement plants incurred averaged $6.96 in maintenance costs per
production tonne in 1993 (Rock-Products (1994)). Evaluated at the production levels that correspond to
numerical equilibrium in 1993, this number implies that the average plant would have incurred $5.7 million
in maintenance costs relative to variable profits of $17.7 million. Our results suggest that the bulk of these
maintenance costs are best considered fixed rather than due to high utilization rates. Of course, the static
nature of the model precludes more direct inferences about fixed costs.
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Lastly, the crushed stone coefficient of 0.29 is too small, given that roughly 1.67 tonnes of

raw materials are used per tonne of cement. We suspect that these discrepancies are due to

measurement error in the data.32 Alternatively, they may be due to a failure of identification

(e.g., see Section 6.3) or due to the implicit assumption that plant productivity is fixed over

the sample period – it seems clear that the renegotiation of onerous labor contracts improved

productivity in the 1980s (e.g., Northrup (1989), Dunne, Klimek, and Schmitz (2009)).

7.3 Regression fits



Figure 6: GMM Estimation Fits for Regional Metrics. Consumption, production, and cross-region ship-
ments are in millions of metric tonnes. Prices are constructed as a weighted-average of plants in the region,
and are reported as dollars per metric tonne. The lines of best fit and the reported R2 values are based on
univariate OLS regressions.

percent of the variation in average prices.34

7.4 An application to competition policy

The model and estimator may prove useful for a variety of policy endeavors. One potential

application is merger simulation, an important tool for competition policy. We use counter-

factual simulations to evaluate a hypothetical merger between Calmat and Gifford-Hill in

1986, when the firms together operated six plants and accounted for 43 percent of industry

capacity in the U.S. Southwest.35

We map the distribution of consumer harm over the U.S. Southwest in Figure 8. In

34The model does not fully capture the fall in average prices over the 1980s and early 1990s. One plausible
explanation is that the model does not account for the productivity improvements that occurred during the
sample period (e.g., Northrup (1989), Dunne, Klimek, and Schmitz (2009)).

35We follow standard practice to perform the counterfactuals. We define an ownership matrix Ωpost(P )
that reflects the post-merger structure of the industry. We then compute the equilibrium post-merger price
vector as the solution to Equation 6, substituting Ωpost(P ) for Ω(P ). Following McFadden (1981) and
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Figure 7: GMM Estimation Fits for Aggregate Metrics. The solid lines plot data and the dashed lines plot
predictions. Consumption, production, and imports are in millions of metric tonnes. Imports are defined
as production minus consumption. Prices are constructed as a weighted-average of the plant-county prices
and are reported in dollars per metric tonne. The R2 values are calculated from univariate regressions of
the observed metric on the predicted metric.

panel A we focus on the effects of the merger, absent any divestitures. The total loss of

consumer surplus is $1.4 million which is small relative to pre-merger consumer surplus of

$239 million. Consumer harm is concentrated in the counties surrounding Los Angeles and



Figure 8: Loss of Consumer Surplus Due to a Hypothetical Merger between Calmat and Gifford-Hill

mitigates consumer harm in Southern California but do little to reduce harm in Maricopa

County. Additional counterfactual exercises indicate that a two-plant divestiture is needed

if this harm is to be mitigated as well.

7.5 Comparison to market delineation

In the introduction, we argue that the market delineation model imposes awkward theoret-

ical assumptions. We now contrast some of our results to those of Ryan (2009), a recent

paper that uses market delineation in a study of the portland cement industry. In partic-

ular, we point out that our approach generates distinctly different estimates of aggregate

elasticity than does the market delineation approach. The discrepancy is consistent with the

notion that our estimation strategy may sometimes provide more reasonable results than

conventional approaches, and that these differences can be sizeable.36

36The discrepancy does not diminish the substantial contribution of Ryan (2009), which estimates an in-
novative dynamic discrete choice game and focuses primarily on the dynamic parameters;micipm(h.)-41736



Ryan makes the common assumptions that demand has constant elasticity and supply

is Cournot within each market. He estimates the aggregate elasticity to be −2.96, which

is quite different than our estimate of −0.16. The difference is entirely due to specification

choices – the constant elasticity demand system produces an aggregate elasticity of −0.15

once housing permits are included as a control.37 However, Ryan cannot use the inelastic

estimate because, within the context of Cournot competition, it would imply that the firm

elasticities are small to be consistent with profit maximization. This occurs because the

Cournot model restricts each firm elasticity to be linearly related to the aggregate elasticity

according the relationship ej = e/sj, where ej, e, and sj denote the firm elasticity, the

aggregate elasticity, and the firm market shares, respectively. Further, Ryan cannot use the

nested logit system to divorce the firm elasticities from the aggregate elasticity (as we do)

because because logit models assume differentiated products whereas Cournot supply models

assume homogenous products. Our takeaway is that our econometric strategy can lead to

improved estimates by connecting the data to more realistic economic models.

8 Conclusion

The literature of the “new386(8te1)ture



production. We are enthused by the breadth of opportunity.
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A Proofs

Proof of Lemma 1: We first show that S(H(θ; ζt)) is continuously differentiable in θ

for θ ∈ Θ. The proof is by contradiction. Suppose that S(H(θ; ζt)) is not continuously

differentiable at some parameter vector θ1 ∈ Θ, i.e., that S(H(θ; ζt))/∂θ′ is discontinuous

at θ1. Then, by the linearity of S and the definition of discontinuity,

lim
θ∗→θ−

1

∂H(θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

̸= lim
θ∗→θ+

1

∂H(θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

.

However, the function f(p, θ; ζt) is continuously differentiable in p and θ by the assumptions

placed on q(p, θ; ζt) and c(p, θ; ζt). It follows that ∂f(p, θ; ζt)/∂θ′ is continuous, i.e. that

lim
θ∗→θ−

1

∂f(p, θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

̸= lim
θ∗→θ+

1

∂f(p, θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

.

Totally differentiating both sides, using the arbitrary price vector H(θ; ζt), yields

lim
θ∗→θ−

1

(
∂f(p, θ; ζt)

∂H(θ; ζt)

∂H(θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

+
∂f(p, θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

)
= lim

θ∗→θ+
1

(
∂f(p, θ; ζt)

∂H(θ; ζt)

∂H(θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

+
∂f(p, θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

)
.

Since f(p, θ; ζt) is continuously differentiable in p and θ, it follows that

lim
θ∗→θ−

1

∂H(θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

= lim
θ∗→θ+

1

∂H(θ; ζt)

∂θ′

∣∣∣∣
θ=θ∗

,

which creates the contradiction. It remains to show that S(H(θ; yt)) is continuously differ-

entiable in yt for θ ∈ Θ, where yt is the vector representation of ζ. The proof is obtainable

by contradiction, using the same steps employed above, and we omit the explicit derivation

for expositional brevity.

�

Proof of Theorem 1: We first place regularity conditions on the data generating pro-

cess. Let yt be the vector representation of the set ζt. We assume that {yt} is a sequence

of i.i.d. random vectors. We further assume that supθ∈Θ |pd
t − S(H̃(ζt, θ))| < ∞, that

supθ∈Θ |∂H(ζt, θ)/∂θ| < ∞, and that supθ∈Θ |[pd
t − S(H̃(ζt, θ))][pd

t − S(H̃(ζt, θ))]′| < ∞.

Amemiya (1985) proves that these conditions, along with the assumptions already introduced
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in the body of the text, imply the following properties:

(i) 1
T

∑T
t=1[p

d
t − S(H̃(zt, θ))] →p E[pd

t − S(H̃(zt, θ))] uniformly in θ ∈ Θ,

(ii) 1
T

∑T
t=1[−∂H(z, θ)/∂θ] →p E[−∂H(z, θ)/∂θ] uniformly in θ ∈ Θ,

(iii) 1
T

∑T
t=1[p

d
t − S(H̃(zt, θ))][pd

t − S(H̃(t θ
E]F11J /F16 11. 11.955 Tf 6.57 0 Td[(!)]TJ /F13 7.97 Tf 1f 10.41 0 Td[(p)]TJ /F16 11..95397 Tf 1f8 6.57 0 T9



Table 3: Consumption, Production, and Prices

Description Mean Std Min Max

Consumption
Northern California 3,513 718 2,366 4,706
Southern California 6,464 1,324 4,016 8,574
Arizona 2,353 650 1,492 3,608
Nevada 1,289 563 416 2,206

Production
Northern California 2,548 230 1,927 2,894
Southern California 6,316 860 4,886 8,437
Arizona-Nevada 1,669 287 1050 2,337

Domestic Prices
Northern California 85.81 11.71 67.43 108.68
Southern California 82.81 16.39 62.21 114.64
Arizona-Nevada 92.92 14.24 75.06 124.60

Import Prices [excludes duties and grinding costs]
U.S. Southwest 50.78 9.30 39.39 79.32
Statistics are based on observations at the region-year level over
the period 1983-2003. Production and consumption are in thou-
sands of metric tonnes. Prices are per metric tonne, in real
2000 dollars. Import prices exclude duties. The region labeled
“Arizona-Nevada” incorporates information from Nevada plants
only over 1983-1991.
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simplex methods such as simulated annealing and the Nelder-Mead algorithm, as well as

quasi-Newton methods such as BFGS. We implement the minimization procedure using the

nls.lm function in R, which is downloadable as part of the minpack.lm package.

We compute numerical equilibrium using Fortran code that builds on the source code

of the dfsane function in R. The dfsane function implements the nonlinear equation solver

developed in La Cruz, Mart́ınez, and Raydan (2006) and is downloadable as part of the



GMM procedure, and we estimate the inclusive value coefficient using λ̃ = log
(

λ
1−λ

)
. We

calculate standard errors with the delta method.

D Data Details

We make various adjustments to the data in order to improve consistency over time and

across different sources. We discuss some of these adjustments here, in an attempt to build

transparency and aid replication. To start, we note that the California Letter is based on a

monthly survey rather than on the annual USGS census, which creates minor discrepancies.

We normalize the California Letter data prior to estimation so that total shipments equal

total production in each year. The 96 cross-region data points include:

• CA to N. CA over 1990-2003

• CA to S. CA over 2000-2003

• CA to AZ over 1990-2003

• CA to NV over 2000-2003

• N. CA to N. CA over 1990-1999

• S. CA to N. CA over 1990-1999

• S. CA to S. CA over 1990-1999

• S. CA to AZ over 1990-1999

• S. CA to NV over 1990-1999

• N. CA to AZ over 1990-1999.

The (single) Arizona-Nevada region includes Nevada data only over 1983-1991. Start-

ing in 1992, the USGS combined Nevada with Idaho, Montana and Utah to form a new

reporting region. We tailor the estimator accordingly. Additionally, this region also includes

information from a small plant located in New Mexico. We scale the USGS production data

downward, proportional to plant capacity, to remove for the influence of this plant. Since

the two plants in Arizona account for 89 percent of kiln capacity in Arizona and New Mexico

in 2003, we scale production by 0.89. We do not adjust prices.

The portland cement plant in Riverside closed its kiln permanently in 1988 but contin-

ued operating its grinding mill with purchased clinker. We include the plant in the analysis

over 1983-1987, and we adjust the USGS production data to remove the influence of the

plant over 1988-2003 by scaling the data downward, proportional to plant grinding capac-

ities. Since the Riverside plant accounts for 7 percent of grinding capacity in Southern

California in 1988, so we scale the production data for that region by 0.93.

We exclude one plant in Riverside that produces white portland cement. White cement
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takes the color of dyes and is used for decorative structures. Production requires kiln temper-

atures that are roughly 50◦C hotter than would be needed for the production of grey cement.

The resulting cost differential makes white cement a poor substitute for grey cement.

The PCA reports that the California Cement Company idled one of two kilns at its

Colton plant over 1992-1993 and three of four kilns at its Rillito plant over 1992-1995, and

that the Calaveras Cement Company idled all kilns at the San Andreas plant following the

plant’s acquisition from Genstar Cement in 1986. We adjust plant capacity accordingly.

We multiply kiln capacity by 1.05 to approximate cement capacity, consistent with the

industry practice of mixing clinker with a small amount of gypsum (typically 3 to 7 percent)

in the grinding mills.

The data on coal and electricity prices from the Energy Information Agency are avail-

able at the state level starting in 1990. Only national-level data are available in earlier

years. We impute state-level data over 1983-1989 by (1) calculating the average discrep-

ancy between each state’s price and the national price over 1990-2000, and (2) adjusting the

national-level data upward or downward, in line with the relevant average discrepancy.
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