The Economics of Predation, hat Drives Pricing hen There Is Learning by Doing.

$$D_{\mathbf{v}} = B_{\mathbf{v}} + n \mathbf{o}_{\mathbf{v}} + \mathbf{o}$$

・ロト・4回ト・4回ト・4回ト・4回ト

Research Questions and Contributions

- n o pr () on , (, or , r
 Routinely and under plausible conditions (generalize Cabral & Riordan 1994).
 - Coexist with non-predatory equilibria for same parameterization (formalize Edlin 2010).
- v pv n
 Isolate predatory incentives by decomposing equilibrium pricing condition.
 - Decomposition provides coherent and flexible way to define predatory incentives.
- on
 - Less severe conduct restrictions have small impact "on average."
 - More severe conduct restrictions have large impact by eliminating equilibria with predation-likl

Decisions and State to State Transitions

e — price-setting phase → e — exit-entry phase → e

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● ● ●

Pricing Decision of Incumbent Firm

V n on E p ■ I o r o o r
 ... in state e at beginning of period → V₂ (e);
 ... in state e' after pricing decisions but before exit and entry decisions are made → U₂ (e').
 B n q on
 V₂ (e) = (p_2 - c(e_2))D_2 (p_2 p (e)) + D (p_2 p (e))U_2 (e) + D_2 (p_2 p (e))U_2 (e) + D_2 (p_2 p (e))U_2 (e) + D (

• r, n , , on

$$\overbrace{\mathsf{mr}}^{n} (\mathbf{p} \cdot \mathbf{p} (\mathbf{e})) - \mathbf{c} (\mathbf{e}) + \overbrace{[\mathsf{U}_{\mathbf{r}} (\mathbf{e} + \mathbf{e}) - \mathsf{U}_{\mathbf{r}} (\mathbf{e})]}^{n} + Y(\mathbf{p} (\mathbf{e})) \underbrace{[\mathsf{U}_{\mathbf{r}} (\mathbf{e}) - \mathsf{U}_{\mathbf{r}} (\mathbf{e} + \mathbf{e})]}_{n} = \frac{1}{n + 1} = \frac$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → □ ◆ ⊙ ◆ ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Competition for and in the Market

	, r , v	´ 0 0
	q , , r,	q,, r,
<u>r r</u>		
ponrnrn,∢,nHHI∞		
on		
p on rn、∙r, pr, p ∞		4
pror n		
p on rn on rrp CS^{∞}		4
ponrno, rp TS^∞		44
, on on rrp CS ^{NPV}	4	
, on orp TS^{NPV}		4

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Predation Like Behavior Arises Routinely

(日)

э

Eq,, r, orr pon n

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conduct Restrictions

- D n,,on o pr or, n n, vorr pon o on r r, on o ron v r
- \mathbf{r} po on r, n $\stackrel{\text{def}}{\leftarrow}$ (\mathbf{p} . \mathbf{p} (\mathbf{e}). \mathbf{e}) = on r pro , , , on pro

▲日▼▲□▼▲□▼▲□▼ □ のので

▲□▶▲@▶▲≧▶▲≧▶ ≧ の�?

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →