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Abstract

Predatory pricing—a deliberate strategy of pricing aggressively in order to eliminate
competitors—is one of the more contentious areas of antitrust policy and its existence
and efficacy are widely debated. The purpose of this paper is to formally characterize
predatory pricing in a modern industry-dynamics framework that endogenizes competi-
tive advantage and industry structure. Our framework encompasses important phenom-
ena such as learning-by-doing, network effects, switching costs, dynamic demand, and
certain types of adjustment costs. Due to its prominent role in legal cases involving
alleged predation, we examine learning-by-doing in more detail.

We first show that predation-like behavior arises routinely in our learning-by-doing
model. Equilibria involving predation-like behavior typically coexist with equilibria in-
volving much less aggressive pricing. To disentangle predatory pricing from mere com-
petition for efficiency on a learning curve we next decompose the equilibrium pricing
condition and develop alternative characterizations of a firm’s predatory pricing incen-
tives. We finally measure the impact of these incentives on industry structure, conduct,
and performance. We show that forcing a firm to ignore the predatory incentives in
setting its price can have a large impact and that this impact stems from eliminating
equilibria with predation-like behavior. Along with the predation-like behavior, however,
a fair amount of competition for the market is eliminated.
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1 Introduction



and exclusive dealing that can be exclusionary are often also efficiency enhancing (Jacobson

& Sher 2006, Melamed 2006).



that results if the firm moves further down its learning curve. Similarly, the advantage-

denying/exit motive is the marginal benefit from preventing the decrease in the probability

of rival exit that results if the rival moves further down its learning curve. Other terms in

the decomposed equilibrium pricing condition capture the impact of the firm’s pricing deci-

sion on its competitive position, its rival’s competitive position, and so on. In this way our

decomposition corresponds to the common practice of antitrust authorities to question the

intent behind a business strategy. Most importantly, our decomposition provides us with

a coherent and flexible way to develop alternative characterizations of a firm’s predatory

pricing incentives, some of which are motivated by the existing literature while others are

novel.

To detect the presence of predatory pricing antitrust, authorities routinely ask whether a

firm sacrifices current profit in exchange for the expectation of higher future profit following

the exit of its rival. One way to test for sacrifice is to determine whether the derivative of a

profit function that “incorporate[s] everything except effects on competition” is positive at

the price the firm has chosen (Edlin & Farrell 2004, p. 510). Our alternative characterizations

correspond to different operationalizations of this everything-except-effects-on-competition

profit function and identify clusters of terms in our decomposition as the firm’s predatory

pricing incentives.

When does predation-like behavior arise? While there is a sizeable literature that

attempts to rationalize predatory pricing as an equilibrium phenomenon by means of reputa-

tion effects (Kreps, Milgrom, Roberts & Wilson 1982), informational asymmetries (Fudenberg

& Tirole 1986), or financial constraints (Bolton & Sharfstein 1990), our learning-by-doing

model forgoes these features and “stacks the deck” against predatory pricing. Our numer-

ical analysis nevertheless reveals the widespread existence of equilibria involving behavior

that resembles conventional notions of predatory pricing in the sense that aggressive pric-

ing in the short run is associated with reduced competition in the long run. The fact that

predation-like behavior arises routinely and without requiring extreme or unusual parame-

terizations calls into question the idea that economic theory provides prima facie evidence

that predatory pricing is a rare phenomenon.

Our paper relates to earlier work by Cabral & Riordan (1994), who establish analytically

the possibility that predation-like behavior can arise in a model of learning-by-doing, and

Snider (2008), who uses the Ericson & Pakes (1995) framework to explore whether American

Airlines engaged in predatory capacity expansion in the Dallas-Fort Worth to Wichita market

in the late 1990s. We go beyond establishing possibility by way of an example or a case study

by showing just how common predation-like behavior is.

We moreover reinforce and formalize a point made by Edlin (2010) that predatory pricing
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is common “if business folk think so” (p. 9). Equilibria involving predation-like behavior

typically coexist in our model with equilibria involving much less aggressive pricing. Multiple

equilibria arise in our model if, for given demand and cost fundamentals, there is more than

one set of firms’ expectations regarding the value of continued play that is consistent with

rational expectations about equilibrium behavior and industry dynamics.5



make current consumers worse off.

Finally, our analysis shows that there may be sensible ways of disentangling efficiency-

enhancing motives from predatory motives in pricing. From the menu of conduct restrictions,

those that emphasize advantage denying as the basis for predation come closest to being

unambiguously beneficial for consumers and society at large in both the short run and

the long run. In contrast to aggressive pricing behavior that is primarily driven by the

benefits from acquiring competitive advantage, aggressive pricing behavior that is primarily

driven by the benefits from preventing the rival from acquiring competitive advantage or

overcoming competitive disadvantage is predatory. While there is some latitude in where

exactly to draw the line between mere competition for efficiency on a learning curve and

predatory pricing, our analysis highlights that this distinction is closely related to that

between advantage-building and advantage-denying motives. These motives, in turn, can be

isolated and measured using our decomposition.

2 Model

Because predatory pricing is an inherently dynamic phenomenon, we consider a discrete-time,



the exit decisions of the incumbent firms and the entry decisions of the potential entrants.

The state at the end of the current period finally becomes the state at the beginning of the

subsequent period.

Before analyzing firms’ decisions, we describe the remaining primitives of our dynamic

stochastic game.

Product market and competitive advantage. As incumbent firm n competes in the

product market, its profit in the current period is πn(p, e) given the vector of firms’ prices

p = (p1, p2) and the industry’s state e.



rival remains uncertain about the firm’s decision. Combining exit and entry decisions, we



In addition, it incurs the setup cost S1 in the current period. Potential entrant 1’s decision

to not enter the industry in state e′ is thus ϕ1(e′, S1) = 1
[
S1 ≥ bS1(e′)

]
, where bS1(e′) is

the critical level of the setup cost. The probability of potential entrant 1 not entering is

ϕ1(e′) = 1 − FS( bS1(e′)) and before potential entrant 1 observes a particular draw of the

setup cost, its expected NPV is given by the Bellman equation

U1(e′) = ES

[
max

{ bS1(e′) − S1, 0
}]

= (1 − ϕ1(e′))
{

β[V1(1, e′2)(1 − ϕ2(e′)) + V1(1, 0)ϕ2(e′)] − ES

[
S1|S1 ≤ bS1(e′)

] }
, (2)

where ES

[
S1|S1 ≤ bS1(e′)

]
is the expectation of the setup cost conditional on entering the

industry.7

Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of

incumbent firm 1 is

V1(e) = max
p1

π1(p1, p2(e), e) +
∑
e′

U1(e′) Pr
(
e′|e, D1(p1, p2(e), e), D2(p1, p2(e), e)

)
. (3)

Because
∑

e′ Pr (e′|e,q) = 1, we can equivalently formulate the maximization problem on

the right-hand side of the Bellman equation (3) as maxp1 Π1(p1, p2(e), e), where

Π1(p1, p2(e), e) = π1(p1, p2(e), e) + U1(e)

+
∑
e′ ̸=e

[
U1(e′) − U1(e)

]
Pr

(
e′|e, D1(p1, p2(e), e), D2(p1, p2(e), e)

)
(4)

is the long-run profit of incumbent firm 1. The first-order condition for the pricing decision

p1(e) of incumbent firm 1 is

0 =
∂π1(p1, p2(e), e)

∂p1

+
∑
e′ ̸=e

[
U1(e′) − U1(e)

] ∂ Pr (e′|e, D1(p1, p2(e), e), D2(p1, p2(e), e))

∂q1

∂D1(p1, p2(e), e)

∂p1

+
∑
e′ ̸=e

[
U1(e) − U1(e′)

] ∂ Pr (e′|e, D1(p1, p2(e), e), D2(p1, p2(e), e))

∂q2

∂ (−D2) (p1, p2(e), e)

∂p1
,

(5)

7See the Online Appendix for closed-form expressions for EX

[
X1|X1 ≥ X̂1(e′)

]
in equation (1) and

ES

[
S1|S1 ≤ Ŝ1(e′)

]
in equation (2).
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where in the last line we take the derivative of (−D2)(p1, p2(e)) instead of D2(p1, e)) with

respect to p1 to make the sign comparable to that of the derivative of D1(p1, p2(e)).

The pricing decision p1(e) of incumbent firm 1 is akin to an investment decision in

that it encompasses its short-run profit π1(p1, p2(e), e) and its long-run competitive position

vis-à-vis that of its rival. Competitive advantage changes as the industry’s state changes.

Equation (5) shows that the firm’s price p1 affects the transitions in the industry’s state

from e to e′ through two distinct channels: first, through the impact that p1 has on the

firm’s quantity q1 and, second, through the impact that p1 has on its rival’s quantity q2. We

call the first channel the advantage-building motive and the second channel the advantage-

denying motive. Loosely speaking, the advantage-building motive captures the idea that a

lower price p1 may—by way of a higher quantity q1—change the industry’s state in a way

that is more favorable to incumbent firm 1. The advantage-denying motive captures the idea

that a lower price p1 may—by way of a lower quantity q2—prevent the industry’s state from

changing in a way that is less favorable to incumbent firm 1. Gaining further insight into

how these motives operate requires putting additional structure on our dynamic stochastic

game.

2.3 Learning-by-doing

Because learning-by-doing is important in many industries where allegations of predation

have surfaced in the past, we use it to provide context for our dynamic stochastic game. Our

learning-by-doing model is closely related to Cabral & Riordan (1994) and Besanko et al.

(2010) but more general by allowing for exit and entry. In contrast to Besanko et al. (2010),

our model abstracts from organizational forgetting.8

Learning-by-doing and production cost. State en ∈ {1, . . . , M} indicates the cumu-

lative experience or stock of know-how of incumbent firm n. Its marginal cost of production

c(en) is given by

c(en) =

{
κρlog2 en if 1 ≤ en < m,

κρlog2 m if m ≤ en ≤ M,

where κ > 0 is the marginal cost for a firm without prior experience, and ρ ∈ [0, 1] is the

progress ratio. Marginal cost decreases by 100(1−ρ)% as the stock of know-how doubles, so

that a lower progress ratio implies a steeper learning curve. As a firm makes sales, it adds to

8Empirical studies show that organizations can forget the know-how gained through learning-by-doing due
to labor turnover, periods of inactivity, and failure to institutionalize tacit knowledge (Argote, Beckman &
Epple 1990, Darr, Argote & Epple 1995, Benkard 2000, Shafer, Nembhard & Uzumeri 2001, Thompson 2007).
Besanko et al. (2010) show that organizational forgetting predisposes firms to price aggressively. Omitting
organizational forgetting from the model therefore “stacks the deck” against finding predation-like behavior.
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its stock of know-how and lowers its production cost in subsequent periods. Once the firm

reaches state m, the learning curve “bottoms out” and there are no further experience-based

cost reductions.9

Demand. The industry draws customers from a large pool of potential buyers. In each

period, one buyer enters the market and purchases one unit of either one of the “inside

goods” that are offered by the incumbent firms at prices p or an “outside good” at an

exogenously given price p0. The probability that incumbent firm n makes the sale is given

by the logit specification

qn = Dn(p) =
exp(−pn

� )∑2
k=0 exp(−pk

� )
, (6)

where σ > 0 is a scale parameter that governs the degree of product differentiation. As

σ → 0, goods become homogeneous.

Pricing decision of incumbent firm. Figure 1 illustrates the possible state-to-state

transitions in our learning-by-doing model.10 The long-run profit of incumbent firm 1 in

equation (4) accordingly simplifies to

Π1(p1, p2(e), e) = (p1 − c(e1))D1(p1, p2(e)) + U1(e)

+D1(p1, p2(e)) [U1(e1 + 1, e2) − U1(e)] + D2(p1, p2(e)) [U1(e1, e2 + 1) − U1(e)] . (7)

Because Π1(p1, p2(e), e) is strictly quasiconcave in p1 (given p2(e) and e), the pricing decision

p1(e) is uniquely determined by a first-order condition analogous to equation (5)

mr1(p1, p2(e))− c(e1) + [U1(e1 + 1, e2) − U1(e)] + Υ(p2(e)) [U1(e) − U1(e1, e2 + 1)] = 0, (8)

9We obviously have to ensure en ≤ M . To simplify the exposition we abstract from boundary issues in
what follows.

10Formally, our learning-by-doing model is a special case of the general model with the probability that
the industry’s state changes from e to e′ during the price-setting phase set to

Pr
(
e′|e,q

)
=


q1 if e′ = (e1 + 1, e2),
q2 if e′ = (e1, e2 + 1),

1 − q1 − q2 if e′ = e,

where qn is the probability that incumbent firm n makes the sale as given in equation (6).
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price−setting phase exit−entry phase

duopoly: both firms are incumbents

 neither wins sale

 1 wins sale

 2 wins sale

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

e e
′

e
′′

(e1, e2

e

monopoly: firm 1 is incumbent, firm 2 is entrant

 neither wins sale

 1 wins sale

 1 stays in, 2 enters

 1 stays in, 2 stays out

 1 exits, 2 enters

 1 exits, 2 stays out

 1 stays in, 2 enters

 1 stays in, 2 stays out

 1 exits, 2 enters

 1 exits, 2 stays out

(e1, 0)

(e1, 0)

(e1 +1, 0)

(e1, 1)

(e1, 0)

(0, 1)

(0, 0)

;e

empty: both firms are entrants

 neither wins sale

 both enter

 1 enters, 2 stays out

 1 stays out, 2 enters

 both stay out

(0, 0) (0, 0)

(1, 1)

(1, 0)

(0, 1)

(0, 0)

Figure 1: Possible state-to-state transitions.
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where mr1(p1, p2(e)) = p1 − �
1−D1(p1;p2(e)) is the marginal revenue of incumbent firm 1, or

what Edlin (2010) calls inclusive pricf8014rm 1, or

what Edlin (2010) calls



depend directly on players’ actions (in our case, firms’ prices) p, we restrict the transition

probabilities Pr (e′7.97RgF∞3 ∞′.9′9 2.8]TJ5 3.9̸ Tjs) e



of dynamic demand.

Price-setting models with costly quantity—or capacity—adjustment are another appli-

cation of our general model, as are—perhaps more surprisingly—quantity-setting models

with costly price adjustments (menu costs). This is because in these latter models a firm’s

quantity has a direct effect on its rival’s price in the current period and thus competitive

position in the subsequent period (see Lapham & Ware (1994) and Jun & Vives (2004)

and the references therein). On the other hand, neither price-setting models with costly

price adjustment nor quantity-setting models with costly quantity adjustment give rise to

an advantage-denying motive.

Finally, some investment-type models such as advertising models where goodwill accu-

mulates according to a firm’s “share of voice” or advertising is combative (see Jorgensen &

Zaccour (2004) and the references therein) give rise to an advantage-denying motive. More

generally, the advantage-denying motive is present whenever a firm’s investment directly and

immediately spills over into its rival’s competitive position.

3 Equilibrium and computation

Because the demand and cost specification is symmetric, we restrict ourselves to symmetric

Markov perfect equilibria in pure strategies of our learning-by-doing model.14 Existence fol-

lows from the arguments in Doraszelski & Satterthwaite (2010). In a symmetric equilibrium,

the decisions taken by firm 2 in state e = (e1, e2) are identical to the decisions taken by firm

1 in state (e2, e1). It therefore suffices to determine the value and policy functions of firm 1.

We use the homotopy or path-following method in Besanko et al. (2010) to compute the

symmetric Markov perfect equilibria of our learning-by-doing model. Although it cannot be

guaranteed to find all equilibria, the advantage of this method is its ability to explore the

equilibrium correspondence and search for multiple equilibria in a systematic fashion.

To explain the homotopy method, consider a single equation H(x, ω) = 0 in a unknown

variable x and a known parameter ω. To the extent that there is more than one x that

solves H(x, ω) = 0 given ω, the mapping H−1(ω) = {x|H(x, ω) = 0} from parameters into

variables is a correspondence. We think of H(x, ω) = 0 as the equilibrium condition and of

H−1(ω) = {x|H(x, ω) = 0} as the equilibrium correspondence. This correspondence takes

the form of one or more “paths” through (x, ω)-space, and the homotopy method seeks to

trace out these paths.

It does so by introducing an auxiliary variable s to define a parametric curve (x(s), ω(s)) ∈
H−1(ω) = {x|H(x, ω) = 0}. Differentiating H(x(s), ω(s)) = 0 with respect to



@H(x(s);!(s)
@x x′(s) + @H(x(s);!(s)

@x ω′(s) = 0. Starting from a point (x(s), ω(s)) on the path,

this differential equation prescribes how x and ω must change to obtain another point on

the path. The homotopy method reduces the task of solving the equation H(x, ω) = 0

to the task of solving this differential equation. This requires an initial condition in the

form of a known point on the path. We may not be able to trace out a particular path in

H−1(ω) = {(x, ω)|H(x, ω) = 0}, and therefore miss some solutions to H(x, ω) = 0, if we do

not have an initial condition for it.

Computing the equilibria of our learning-by-doing model mirrors the above example

except that it involves many equilibrium conditions H(x,ω) = 0 (Bellman equations and

optimality conditions), many variables x = (V1,U1,p1,ϕ1) (values and policies), and many

parameters ω = (ρ, σ, X, . . .).15 To explore the equilibrium correspondence H−1(ω) =

{x|H(x,ω) = 0}, we compute slices of it by varying a parameter of the model such as the

progress ratio ρ while holding the remaining parameters fixed. We denote a slice of the

equilibrium correspondence along ρ by H−1(ρ
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Figure 2: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Aggressive (upper panels) and accommodative (lower
panels) equilibria.
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notions of predatory pricing. The industry may also evolve into a mature duopoly if the

follower manages to crash through the mobility barrier by winning the sale but, as the upper

right panel of Figure 2 shows, this is far less likely than an entrenched monopoly.

The lower panels of Figure 2 are typical for an accommodative equilibrium. There is

a shallow well in state (1, 1) with p1(1, 1) = 5.05 as the lower left panel shows. Without

mobility barriers in the form of trenches, however, any competitive advantage is temporary

and the industry evolves into a mature duopoly as the lower right panel shows.

To further illustrate how industry dynamics differ between the aggressive and accom-

modative equilibria, we use the policy functions p1 and ϕ1 for a particular equilibrium to

construct the matrix of state-to-state transition probabilities that characterizes the Markov

process of industry dynamics. From this, we compute the transient distribution over states

in period T , µT , starting from state (1, 1) in period 0. This tells us how likely each possible

industry structure is in period T given that the game began as an emerging duopoly. De-

pending on T , the transient distributions can capture short-run or long-run (steady-state)

dynamics. We think of period 1000 as the long run and, with a slight abuse of notation, de-

note µ1000 by µ∞. We use the transient distribution in period 1000 rather than the limiting

(or ergodic) distribution to capture long-run dynamics because the Markov process implied

by the equilibrium under consideration may have multiple closed communicating classes.19

For the aggressive equilibrium, the left panel of Table 2 reports the most likely industry

structure at various times T as given by the mode of the transient distribution µT along with

firms’ pricing decisions and non-operating probabilities. After the industry has emerged from

the preemption battle, in period 1 the leader (firm 1) prices aggressively in order to keep the

follower (firm 2) in the exit zone. By period 4 the follower has most likely exited the industry

and the leader raises its price. From thereon, the industry remains an entrenched monopoly.

For the accommodative equilibrium, after the industry emerges from the preemption battle

in period 1, the leader enjoys a competitive advantage over the follower. As can be seen

in the right panel, this advantage is temporary: after period 5 the most likely industry

structure is symmetric (or almost symmetric). The industry ultimately becomes a mature

duopoly.

assesses its prospects in the industry. In this particular equilibrium, ϕ2(e1, 0) = 1.00 for e1 ∈ {2, . . . , 30}, so
that the potential entrant does not enter if the incumbent firm has moved down from the top of its learning
curve.

19The multiple closed communicating classes that may arise for a particular equilibrium are conceptually
different from multiple equilibria. A closed communicating class is a set of states from which there is no escape
once the industry has entered it. The transient distribution in period 1000 accounts for the probability of
reaching any one of these classes, starting from state (1, 1) in period 0.
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aggressive equilibrium accommodative equilibrium
T e p1(e) p2(e) ϕ1(e) ϕ2(e) e p1(e) p2(e) ϕ1(e) ϕ2(e)

0 ( 1, 1) -34.78 -34.78 0.00 0.00 ( 1, 1) 5.05 5.05 0.00 0.00
1 ( 2, 1) 0.08 3.63 0.00 0.22 ( 2, 1) 5.34 6.29 0.00 0.00
2 ( 3, 1) 0.56 4.15 0.00 0.22 ( 3, 1) 5.45 6.65 0.00 0.00
3 ( 4, 1) 0.80 4.41 0.00 0.22 ( 4, 1) 5.51 6.82 0.00 0.00
4 ( 5, 0) 8.62 – 0.00 1.00 ( 5, 1) 5.54 6.93 0.00 0.00
5 ( 6, 0) 8.60 – 0.00 1.00 ( 6, 1) 5.56 7.00 0.00 0.00
6 ( 7, 0) 8.59 – 0.00 1.00 ( 4, 4) 5.65 5.65 0.00 0.00
7 ( 8, 0) 8.58 – 0.00 1.00 ( 5, 4) 5.56 5.68 0.00 0.00
8 ( 9, 0) 8.57 – 0.00 1.00 ( 5, 5) 5.57 5.57 0.00 0.00
9 ( 9, 0) 8.57 – 0.00 1.00 ( 6, 5) 5.50 5.59 0.00 0.00

10 (10, 0) 8.56 – 0.00 1.00 ( 6, 6) 5.51 5.51 0.00 0.00
20 (18, 0) 8.54 – 0.00 1.00 (11,11) 5.29 5.29 0.00 0.00
50 (30, 0) 8.54 – 0.00 1.00



where the (share-weighted) average price in state e is

p(e) =
2∑

n=1

Dn(p1(e), p2(e))

D1(p1(e), p2(e)) + D2(p1(e), p2(e))
pn(e).

Performance. Expected long-run consumer surplus:

CS∞ =
∑
e

µ∞ (e) CS(e),

where CS(e) is consumer surplus in state e.

Expected long-run total surplus:

T S∞ =
∑
e

µ∞ (e)

{
CS(e) +

2∑
n=1

PSn(e)

}
,

where PSn(e) is the producer surplus of firm n in state e.20

Expected discounted consumer surplus:

CSNP V =
∞∑

T =0

βT
∑
e

µT (e) CS(e).

Expected discounted total surplus:

TSNP V =

∞∑
T =0

βT
∑
e

µT (e)

{
CS(e) +

2∑
n=1

PSn(e)

}
.

By focusing on the states that arise in the long run (as given by µ∞), CS∞ and TS∞

summarize the long-run implications of equilibrium behavior for industry performance. In

contrast, CSNP V and T SNP V summarize the short-run and the long-run implications that

arise along entire time paths of states (as given by µ0, µ1, . . . ). Hence, CSNP V and TSNP V

reflect any short-run competition for the market as well as any long-run competition in the

market.

Table 3 illustrates the SCP metrics for the equilibria at the beginning of Section 4. The

Herfindahl index reflects that the industry is substantially more likely to be monopolized

under the aggressive equilibrium than under the accommodative equilibrium. Prices are

higher, and consumer and total surplus are lower, under the aggressive equilibrium than

under the accommodative equilibrium. The difference between the equilibria is smaller

for CSNP V than for CS∞ because the former metric accounts for the competition for the

20See the Online Appendix for expressions for CS(e) and P Sn(e).
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aggressive accommodative
equilibrium equilibrium

HHI∞ 0.96 0.50
p∞ 8.26 5.24
CS∞ 1.99 5.46
TS∞ 6.09 7.44
CSNP V 104.17 109.07
TSNP V 110.33 121.14

Table 3: Industry structure, conduct, and performance. Aggressive and accommodative
equilibria.

market in the short run that manifests itself in the deep well and trench of the aggressive

equilibrium. The competition for the market in the short run mitigates to some extent the

lack of competition in the market in the long run.

4.2 Equilibrium correspondence
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Figure 3: Expected long-run Herfindahl index. Equilibrium correspondence: slice along
ρ ∈ [0, 1] (upper panel), σ ∈ [0, 3] (middle panel), and X ∈ [−1.5, 7.5] (lower panel).
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Product differentiation. The middle panel of Figure 3 plots HHI∞ against σ. The

degree of product differentiation σ influences how desirable it is for a firm to induce its rival

to exit the industry: As σ → 0 the goods become homogenous, competition intensifies, and

profits fall. Product differentiation is already very weak for σ = 0.3 and moderately strong

for σ = 3.22

There are multiple equilibria for σ below 1.10. While H−1(σ) involves just a main path

(labeled MP



equilibria varies widely across parameterizations; see the Online Appendix for details.

5 Isolating predatory incentives

To detect the presence of predatory pricing, antitrust authorities routinely ask whether a

firm sacrifices current profit in exchange for the expectation of higher future profit following

the exit of its rival. This sacrifice test thus views predation as an “investment in monopoly

profit” (Bork 1978).26

Edlin & Farrell (2004) point out that one way to test for sacrifice is to determine whether

the derivative of a suitably defined profit function is positive at the price the firm has

chosen, which indicates that the chosen price is less than the price that maximizes profit.

Moreover, “[i]n principle this profit function should incorporate everything except effects on

competition” (p. 510, our italics).

To formalize the sacrifice test and relate it to our model, we partition the profit func-

tion Π1(p1, p2(e), e) in equation (7) into an everything-except-effects-on-competition (EEEC)

profit function Π0
1(p1, p2(e), e) and a remainder Ω1(p1, p2(e), e) = Π1(p1, p2(e), e)−Π0

1(p1, p2(e), e)

that by definition reflects the effects on competition. Because @Π1(p1(e);p2(e);e)
@p1

= 0 in equi-

librium, the sacrifice test
@Π0

1(p1(e);p2(e);e)
@p1

> 0 is equivalent to

−∂Ω1(p1(e), p2(e), e)

∂p1
=

∂Ω1(p1(e), p2(e), e)

∂(−p1)
> 0. (9)

@Ω1(p1(e);p2(e);e)
@(−p1) is the marginal return to a price cut in the current period due to changes

in the competitive environment. If profit is sacrificed, then inequality (9) tells us that

these changes in the competitive environment are to the firm’s advantage. In this sense,
@Ω1(p1(e);p2(e);e)

@(−p1) is the marginal return to the “investment in monopoly profit” and thus a

natural measure of the firm’s predatory pricing incentives.

We next turn to characterizing the firm’s predatory pricing incentives @Ω1(p1(e);p2(e);e)
@(−p1) for

a variety of plausible specifications of the EEEC profit function.

Short-run profit. Expanding the above quote from Edlin & Farrell (2004) “[i]n princi-

ple this profit function should incorporate everything except effects on competition, but in

practice sacrifice tests often use short-run data, and we will often follow the conventional

shorthand of calling it short-run profit” (p. 510, our italics). Defining Π0
1(p1, p2(e), e) =

26



(p1 − c(e1))D1(p1, p2(e)) to be short-run profit, it follows from the sacrifice test (9) that
@Ω1(p1(e);p2(e);e)

@(−p1) > 0 if and only if [U1(e1 + 1, e2) − U1(e)]+Υ(p2(e)) [U1(e) − U1(e1, e2 + 1)] >

0. Our first definition of predatory incentives thus comprises the advantage-building motive

and the advantage-denying motive:

Definition 1 (short-run profit) The firm’s predatory pricing incentives are [U1(e1 + 1, e2) − U1(e)]+

Υ(p2(e)) [U1(e) − U1(e1, e2 + 1)].

The sacrifice test based on Definition 1 is equivalent to the inclusive price mr1(p1(e), p2(e))

being less than short-run marginal cost c(e1).27 Because mr1(p1(e), p2(e)) → p1(e) as

σ → 0, in an industry with very weak product differentiation it is also nearly equivalent

to the classic Areeda & Turner (1975) test that equates predatory pricing with below-cost

pricing and underpins the current Brooke Group standard for predatory pricing in the U.S.

Dynamic competitive vacuum. Definition 1 may be too severe as it forces a static

model of profit maximization onto a dynamic world. In particular, it denies the efficiency

gains from pricing aggressively in order to move down the learning curve.

Farrell & Katz (2005) argue forcefully that an action is predatory to the extent that it

weakens the rival (see, in particular, p. 219 and p. 226). A firm should therefore behave

as if it were operating in a “dynamic competitive vacuum” in the sense that the firm takes

as given the competitive position of its rival in the current period but ignores that its

current price can affect the evolution of the competitive position of its rival beyond the



c(e1) − [U1(e1 + 1, e2) − U1(e)]. Note that a lower bound on long-run marginal cost c(e1) −
[U1(e1 + 1, e2) − U1(e)] is out-of-pocket cost at the bottom of the learning curve c(m) (Spence

1981). Hence, if mr1(p1(e), p2(e)) < c(m), then mr1(p1(e), p2(e)) < c(e1)−[U1(
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The impact of a price cut on rival exit is reflected in Γ



Γ1
1(1, 1) and the advantage-building/exit motive Γ2

1(1, 1). In contrast, the competition for the

market in the trench in states (e1, 1) with e1 ∈ {2, . . . , 30} is driven mostly by the baseline

advantage-denying motive Θ1
1(e1, 1) and the advantage-denying/exit motive Θ2

1(e1, 1). The

predation-like behavior in the trench thus does not arise because by becoming more efficient

the leader increases the probability that the follower exits the industry. It arises because

by preventing the follower from becoming more efficient the leader keeps the follower in the

trench and thus prone to exit. Another way to put this is that the leader makes the cost to

the follower of attempting to move down its learning curve comparable to the benefit to the

follower of doing so, so that exit is in the follower’s interest. Viewed this way, the aggressive

pricing in the trench can be viewed as raising the rival’s cost of remaining in the industry.

For a set of states (e1, 4) with e1 ∈ {1, . . . , 30} where firm 2 has already gained some trac-

tion, in contrast, neither the decomposed advantage-building motives nor the decomposed

advantage-denying motives are very large. Our computations show that for all parameteri-
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off” the predatory incentives according to a particular definition. For example, Definition

2 forces the firm to ignore
∑4

k=1 Θk
1(e) = [U1(e) − U1(e1, e2 + 1)] in setting its price, so

the constraint is Ξ1(p1, p2(e), e) = mr1(p1, p2(e))− c(e1)+
[∑5

k=1 Γk
1(e)

]
= mr1(p1, p2(e))−

c(e1)+[U1(e1 + 1, e2) − U1(e)] = 0. We use the homotopy method to compute the symmetric

Markov perfect equilibria of the counterfactual game with a conduct restriction (according

to a particular definition) in place. Comparing the SCP metrics between the counterfactuals

and equilibria tells us how much bite the predatory incentives have.

6.1 Counterfactual and equilibrium correspondences

As with the equilibrium correspondence in Section 4.2, we compute two-dimensional slices

along (ρ, σ), (ρ, X), and (σ, X) through the counterfactual correspondence. Our computa-

tions show that for all parameterizations the counterfactual is unique for Definitions 1 and

2 but not necessarily for Definitions 3 and 4. Even for Definitions
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equilibrium survives the conduct restriction if, starting from λ = 1, the homotopy reaches

the counterfactual correspondence. A surviving equilibrium smoothly deforms into a sym-

metric Markov perfect equilibrium of the counterfactual game by gradually tightening the

conduct restriction. We say that an equilibrium is eliminated by the conduct restriction if

the homotopy algorithm returns to the equilibrium correspondence.33

Figure 4 distinguishes between eliminated and surviving equilibria for Definitions 1–4.

Definitions 1 and 2 eliminate the aggressive equilibria that are associated with higher ex-

pected long-run Herfindahl indices whereas the accommodative equilibria that are associated

with lower expected long-run Herfindahl indices survive these conduct restrictions. By con-

trast, some of the more aggressive equilibria survive Definitions 3 and 4, along with all the

more accommodative ones. Nevertheless, Definitions 3 and 4 eliminate at least some of the

aggressive equilibria.

To illustrate, for the baseline parameterization with ρ = 0.75 all three equilibria (in-

cluding the aggressive and accommodative equilibria at the beginning of Section 4) survive

Definitions 3 and 4. For ρ = 0.8 one of the three equilibria survives these conduct restrictions;

the two most aggressive equilibria with HHI∞ = 0.80 and HHI∞ = 0.89 are eliminated.

For ρ = 0.7 three of the five equilibria survive; again the two most aggressive equilibria with

HHI∞ = 0.99 and HHI∞ = 1.00 are eliminated.

These patterns are general. The first row of Table 7 shows the percentage of equilibria

that are eliminated by a particular conduct restriction or survive it for the two-dimensional

slices along (ρ, σ), (ρ, X), and (σ, X) through the equilibrium correspondence. We restrict

attention to parameterizations with multiple equilibria because if an equilibrium is unique,

then (under some regularity conditions) it necessarily survives the conduct restriction. In line

with Figure 4, the more severe conduct restrictions based on Definitions 1 and 2 eliminate

many more equilibria than the less severe conduct restrictions based on Definitions 3 and 4.

The remaining rows of Table 7 show how industry structure, conduct, and performance

differ between eliminated and surviving equilibria. We report averages and standard devi-

ations of the SCP metrics that equally weigh parameterizations in order to compensate for

the different number of equilibria at different parameterizations. The eliminated equilibria

have, on average, higher concentration, higher prices, and lower expected long-run consumer

surplus than the surviving equilibria. With the relatively small exception of Definition 4 for

the (ρ, X)-slice, the eliminated equilibria also have, on average, lower expected long-run total

surplus. This is because the eliminated equilibria more often than not involve an entrenched

monopoly with HHI∞ = 1. The equilibria that are eliminated by a particular conduct re-

striction thus tend to be “worse” in the long run than the equilibria that survive it, although

the standard deviations make clear that this is not the case for all parameterizations.
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While the eliminated equilibria tend to have less competition in the market in the long

run than the surviving equilibria, they may have more competition for the market in the short

run. The eliminated equilibria have, on average, higher expected discounted consumer and

total surplus than the surviving equilibria under Definition 1 for the (ρ, σ
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amount of competition for the market, the conduct restrictions associated with Definitions

2 and 4 tend to very modestly decrease expected discounted consumer surplus and increase

expected discounted total surplus.

Definition 3 finally forces the firm to ignore the advantage-building/exit motive—thereby

limiting the competition for the market in the well of an aggressive equilibrium—and the

advantage-denying/exit motive—thereby limiting the competition for the market in the

trench. Imposing the associated conduct restriction brings about a long-run benefit compa-

rable to that of the weaker Definition 4, but it does so at a short-run cost comparable to

that of the stronger Definition 2.

While the averages in Table 8 provide a “broad brush” view of the impact of a conduct

restriction, the standard deviations as well as the percentages up and down indicate that

this impact can differ depending on the parameterization. Especially for Definitions 3 and 4,

the averages encompass positive changes for some parameterizations and negative changes

for others. For example, the conduct restrictions associated with Definitions 3 and 4 worsen

HHI∞, p∞, CS∞, and T S∞ for the baseline parameterization with ρ = 0.75 and they

improve these SCP metrics for ρ = 0.7. In this respect, our analysis echoes the point made by

Cabral & Riordan (1997) and Farrell & Katz (2005) that, depending on the details, predatory

pricing can either harm or benefit consumers. Hence, a more “scalpel-like” approach to

identifying predatory incentives may be warranted that, ideally, starts with tailoring the

model to the institutional realities of the industry under study and then estimates the

underlying primitives.

Summing up, our impact analysis resonates with the “bird-in-hand” view of predatory

pricing (Edlin 2010). Judge (now U.S. Supreme Court Justice) Stephen Breyer expressed

skepticism about declaring an above-cost price cut illegal: “[T]he antitrust laws rarely reject

such beneficial ‘birds in hand’ [an immediate price cut] for the sake of more speculative

‘birds in the bush’ [preventing exit and thus preventing increases in price in the future].”35

Our impact analysis supports this view because for all definitions of predatory incentives,

the price of making future consumers better off is making current consumers worse off.

Our impact analysis further affords some broad conclusions regarding the different def-

initions. First, by forcing a static model of profit maximization onto a dynamic world,

Definition 1 annihilates competition for the market and is thus very costly for consumers

and society in the short run. As it is closely related to Definition 1, this likely carries over

to the classic Areeda & Turner (1975) test that equates predatory pricing with below-cost

pricing. Second, Definition 3 is dominated by Definition 2 in terms of preserving competition

in the market in the long run and by Definition 4 in terms of preserving competition for

the market in the short run. Third, Definition 2 brings about a larger benefit to society

35Barry Wright Corp. v. ITT Grinnell Corp., 724 F.2d 227, 234 (1st Cir. 1983).
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and to consumers in the long run at a larger cost to consumers in the short run than Defi-

nition 4. While none of the conduct restrictions is unambiguously beneficial for consumers

and society at large in both the short run and the long run, the conduct restrictions asso-

ciated with Definitions 2 and 4 nevertheless come closest. For the overwhelming majority

of parameterizations, both definitions increase CS∞, TS∞, and TSNP V or leave them un-

changed. Definition 4 moreover increases CSNP V or leaves it unchanged in a majority of

parameterizations.

What unifies Definitions 2 and 4 is their emphasis on advantage denying as the basis for



the merits of a particular definition of predation on conceptual grounds, we directly measure

the impact of the predatory incentives on industry structure, conduct, and performance.

Our numerical analysis of a model of learning-by-doing shows that behavior resem-

bling conventional notions of predatory pricing—aggressive pricing followed by reduced

competition—arises routinely, thus casting doubt on the notion that predatory pricing is

a myth and does not have to be taken seriously by antitrust authorities.

Aggressive equilibria involving predation-like behavior typically coexist with accommoda-

tive equilibria involving much less aggressive pricing. Multiple equilibria arise in our model

if, for given demand and cost fundamentals, there is more than one set of firms’ expectations

regarding the value of continued play that is consistent with rational expectations about

equilibrium behavior and industry dynamics. A conduct restriction that forces a firm to

ignore the predatory incentives in setting its price can short-circuit the expectation that

predatory pricing “works” and in this way eliminate some—or even all—of the aggressive

equilibria.

The conduct restrictions associated with the stronger Definitions 1 and 2 eliminate many

more equilibria than the conduct restrictions associated with the weaker Definitions 3 and
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