Productivity and Quality in Health Care: Evidence from the Dialysis Industry

Paul L. E. Grieco¹ Ryan C. McDevitt²

¹Department of Economics The Pennsylvania State University

> ²Simon School of Business University of Rochester

November 15, 2012

Health Care Expenditures are Rising

- Health care expenditures are rising faster than income in most developed countries.
- Policy makers are looking for mechanisms to slow the increase in health care costs by incentivizing productivity.
 - Medicare Prospective Payment System (PPS): Pay for medical care on the basis of diagnosis, not on cost of treatment provided.
 - In the private sector, HMOs operate in a similar manner.
 - Proponents of increased competition argue that medical services will compete on price and eliminate \wasteful procedures."

What could go wrong?

- Being an experience good, it can be di cult for consumers or regulators to observe quality of care.
- If we give providers incentives to be more \productive", will they respond by lowering quality?

 $\frac{\text{Empirical question 1: Is it costly for medical personnel to exert}}{e \text{ ort to increase quality?}}$

Empirical question 2: Do they adjust the e ort on the basis of incentives?

Focus on the US Dialysis Industry

- Relatively homogeneous service with clear measure of output quantities.
- Clear capital and labor measures.

Challenges

- Quality (and input choices) are endogenous.
 - Adapt Olley-Pakes (OP) and Ackerberg, Caves, Frazer (ACF) models for use in dialysis industry.
- Quality is not directly observed.
 - Proxy for quality e ort with outcome measure (infection rate) and correct for measurement error by using a second outcome measure as an instrument.

Quality is Costly:

 Holding quality and capital xed, raising output 1.2 percent would require a 5 percent increase in labor inputs. Hiring one additional part time worker for average sta levels.

Firms with stronger pro t incentive o er lower quality:

 Non-Pro t Centers have infection rates 1.3 percentage points (more than 10 percent) lower than for-pro t centers.

Competition does not seem to incentivize higher quality:

Centers in monopoly markets do not have lower quality.

Dialysis Procedure

Grieco and McDevitt Productivity and Quality

We assume a Cobb-Douglas production function,

$$Y_{it} = A_{it}(q_{it})K_{it}^{k}L_{it}^{k}$$

where for center i in year t,

- *Y_{it}* is patient-years of service provided.
- *K_{it}* is the number of stations available in the center.
- L_{it} is full-time equivalent nurses and technicians on sta .
- A(q_{it}) is a Hicks-neutral technology shifter which depends on \quality target" for septic infection rate.

Let,

$$A(q_{it}) = e^{0 + qq_{it} + !_{it} + i_{t}}$$

Where,

- q is the impact of quality targets on production.
- $!_{it}$ is the rm productivity which is observed by the rm at t.
- it is unanticipated productivity or measurement error.

Taking logs we arrive at,

$$y_{it} = 0 + q q_{it} +$$

$y_{it} = 0 + q q_{it} + k k_{it} + it + it$

- We face the usual endogeneity problem: centers observe ! it when choosing inputs and quality target.
- Olley-Pakes approach: use investment as a proxy to develop a control function for productivity.
- However, we can't use investment because net investment is zero 90% of the time.
- Instead we'll use net hiring, because of license and training requirements, delay in hiring ts the industry.

We allow rm policies to depend on observable characteristics, x_{it} that do not directly a ect production.

- For-Pro t Status: Non-pro t rms may prefer higher quality because they are maximizing something other than pro ts.
- Competition: Centers in competitive markets may want to provide higher quality of service.

So we have the policy functions:

$$q_{it} = q(k_{it}; \hat{x}_{it}; k_{it}; l_{i/t-b}) \qquad h_{it} = h(k_{it}; \hat{x}_{it}; k_{it}; l_{i/t})$$

		OLS	FE	Model
Quality E ort,	q	-0.0028	-0.0018	-0.0124
		(0.0007)	(0.0004)	(0.0042)
Capital, _k		0.4607	0.1788	0.5134
		(0.0209)	(0.0514)	(0.0468)
Labor, 🕓		0.6723	0.1855	0.2453
		(0.0149)	(0.0119)	(0.0319)

Table: Production Function Estimates.

Results on Quality-Quantity Tradeo

- Lowering quality target (raising targeted septic infection rate) by 1 percentage point can increase output by 1.2 percent.
 - Serving roughly one additional patient (a two percent increase in output for the average center) holding inputs & productivity xed would raise center's infection rate 1.6 points.
- Same increase in output could be achieved by raising labor input 5 percent.
 - Serving one additional patient holding capital, quality, & productivity xed would require one additional nurse (roughly a 10 percent increase in sta ng).

Of course, there may be non-linear e ects; as a robustness check, we use the partially linear speci cation:

$$q_{it} = c(it) + fp(it) + (k_{it}; i_t; f_{it}) + i_t;$$

- c(it) is a dummy for whether rm faces 0,1,2, or 3 or more rms in its home market (hospital service area).
- $_{fp(it)}$ is a dummy for whether rm is for-pro t.
- is a non-parametric function of capital, labor, and productivity estimate.
- Can also subsume for pro t status and competition levels into

		IV	V
For Pro t	-1.5390	-1.5444	
	(0.2030)	(0.2111)	
Monopolist	0.4824		0.4725
	(0.2196)		(0.2222)
Duopolist	-0.2977		-0.2926
	(0.1843)		(0.1855)
Triopolist	-0.4678		-0.4431
	(0.2234)		(0.2224)
Nonparametric Control for:			
Productivity	Yes	Yes	Yes
Capital	Yes	Yes	Yes
Labor	Yes	Yes	Yes
For-Pro t Status	No	No	Yes
Competition	No	Yes	No

Table: Partially Linear Quality Regressions.

Conclusion

- We nd a signi cant quality-quantity tradeo in the industry | rms can raise output by reducing quality.
- Firms with di erent pro t incentives choose quality levels di erently.
- Competition does not seem-333(qu2i g 0 G0 a0.2 o)aqetition doy.