《曰》《卽》《臣》《臣》 臣 、

・ロト・(四)・(日)・(日)・(日)・(日)

Research objective

Setting

•

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 900

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Entry and exit decisions

۲

Aggregate dynamics

Figure: Total number of outlets opened/closed in Canada over time.

First movers

Table: Tabulation of the total number of markets that a chain was the (unique) ...rst entrant.

Chain	First entrant
A & W	100
Burger King	50
Harvey's	65
McDonald's	334
Wendy's	34

イロト イロト イヨト イヨト

Time of entry

E

・ロト ・ 四ト ・ モト・

Time of exit

< □ >

문 문 문

Market characteristics

Table: Summary statistics for markets that were occupied in 1970, and for markets that were occupied after 1970.

	Occupied 1970		Occupied after 1970	
Variable	Mean	Std. Dev	Mean	Std. Dev
Population (persons)	21,144	7,433	23,895	12,809
Population density (persons per sq km)	2,892.93	3,276.488	1,615.26	2,271.38
Total sales (billion CDN)	1.410	1.160	2.330	1.170
Total retail locations	483	364	850	408
Income (dollars)	57,579	14,082.81	55,518.77	18,571.69
Property value (million CDN)	0.322	0.168	0.259	0.161

3

イロト イポト イヨト イヨト

《曰》《卽》《臣》《臣》 臣 、

Results

Table:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - - へ

Beliefs about market unobserved heterogeneity

۲

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Two ways to learn

ALL A L (AAAA C C LL FALL

- Learning through entry: Within a year of entering a market, a retailer resolves its uncertainty about the size of the market.
 - imt 0 if the retailer entered at time t 1.
 - imt s
 0 for all s
 0 if imt
 0.
- Learning from others: A potential entrant who has not previously entered (and left) the market already can learn from the observed past decisions of their informed rivals.
 - Updates the beliefs, imt, using Baye's rule and observed past stay/exit decisions among informed rivals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

イロト イポト イヨト イヨト

Bayesian updating notation

- Set of informed retailers who made informed decisions at t 1 is J_{mt} .
- Vector of informed decisions made at t 1 is a_{mt-1} .

$$\frac{\Pr{a_{mt \ 1} \ m \ 0 \ imt \ 1}}{\Pr{a_{mt \ 1} \ m \ 0 \ imt \ 1} \ Pr \ a_{mt \ 1} \ m \ 0 \ 1 \ imt \ 1}}$$

3

Markov Perfect Equilibrium (MPE)

$$_{i}$$
 X_{mt}, $_{imt}$, arg max $_{a_{imt}}$ $_{0,1}$ E $_{imt}$ V_i X_{mt} 1, $_{imt}$ 1, $_{m}$ [

 \bullet Strategies $_{i}$ X_mt, $_{imt},$ $_{m}$ $_{i}$ assumed to depend on state variables, X_mt, $_{imt},$ $_{m}$ where

$$X_{mt}$$
 $a_{mt 2}, a_{mt 1}, mt 1, Z_{mt}$

- $\bullet~V_i~X_{mt~1,~imt~1,~m}~$ is the continuation value.
- imt is one shot payo¤ evaluated at strategies i Xmt, imt, m i.
- \bullet Integrating strategy function with respect to $_{imt}$ yields best response function P_i X_mt, $_m$.
- MPE obtained as ...xed point.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Identi...cation of structural model

- Strategic interactions (_{2ij}).
 - Chain's incumbency status has direct impact on its own ‡ow pro...ts through entry costs, but will only a¤ect rival through best response probability.
 - This is true if chain was not already active 2 perio?(s)-33rr ifae ae(s)-33eraiity.

Simple DID test for learning

P 0,1 P 0,0 P 1,1 P 1,0

- Lets focus on two chains.
- Chain i is either a potential entrant or incumbent, while its rival j either stayed or exited at t 1.
- Set 0 and let imt be uniformly distributed.
- P aimt 1, ajmt 1 is one-shot payo(ot)Td[)\$G3t4iven7(y)28(ed)015.13

Simple DID test for learning

 \bullet Under null hypothesis of no learning ($_i$ \quad 0):

0 2ij 2ji Pi 0, 1 Pi 0, 0 Pi 1, 1 Pi 1, 0.

• Also possible to write ₀, based on assumptions above, as:

 $_{0}$ P_i 0, 1 P_i 0, 0 P_i 1, 1 P_i 1, 0.

• Therefore learning holds in DID is zero:

_i 0 ₀ P_i 0, 1 P_i 0, 0 P_i 1, 1 P_i 1, 0 0.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへ⊙

DID regression

- Let $\stackrel{P}{_{i}}$ 0, 1 $\stackrel{01}{_{i}}$, $\stackrel{P}{_{i}}$ 0, 0 $\stackrel{00}{_{i}}$, $\stackrel{P}{_{i}}$ 1, 1 $\stackrel{11}{_{i}}$, and $\stackrel{P}{_{i}}$ 1, 0 $\stackrel{10}{_{i}}$.
- Based on the assumptions above, and some algebra, regression can be written as:
 - E a_{imt} a_{mt 1}, Z_{mt} ⁰⁰ a_{imt 1} a_{jmt 1}

Implications of learning: Strategic delay

	With uncertainty	Without uncertainty
A & W	5.0	4.0
Burger King	3.3	4.5
Harvey's	3.3	8.2
McDonald's	7.7	5.8
Wendy's	11.7	11.9

Э

・ロト ・ 四ト ・ モト・

・ロト・(中下・(中下・(日下・(日下)))

Future directions

Thank you!