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1. Introduction 

Firms’ coordination to obtain high profits has been a continuous concern for researchers 

and antitrust authorities. As a consequence, there exists a large body of theoretical work 

on the factors that determine the likelihood of collusion. But analyzing collusion 

empirically is difficult because the illegal status of cartels makes field data scarcely 

available. Importantly, with many exogenous and unobservable factors in field data, the 

task of identifying and estimating the effect of different market conditions on collusion 

becomes problematic. One objective of this paper is to improve the understanding of the 

role of two factors that have been prominent in models of repeated interaction with 

demand uncertainty: demand information (knowledge of the demand function or 

schedule) and monitoring (knowledge of rivals’ actions). The general strategy is to 

analyze the effects of these factors on collusion by generating data from controlled 

experiments that resemble various demand information and monitoring conditions. 

The motivation comes from two models that have been highly influential in the 

development of the theoretical and empirical literature on cartel stability: Green and 

Porter (1984) and Rotemberg and Saloner (1986) [GP and RS henceforth]. Both models 

assume an uncertain (stochastic) demand structure, but differ on their assumption about 

firms’ information regarding the actual demand realization (e.g. high, low). RS assume 

that firms have perfect foresight about demand next period (i.e. the demand realization 

can be anticipated) whereas GP assume that firms are always uncertain about (future and 

past) demand realizations. In addition, GP assume that monitoring among cartel members 

is imperfect (i.e. comes in the form of a noisy public signal),2 whereas RS assume that 

monitoring is perfect. Our experimental design is guided by these differences in 

assumptions: in two of our treatments monitoring and demand information differ in the 

same way as GP and RS differ. In a third, ‘intermediate’, treatment there is uncertainty 

about next period’s demand realization (as in GP) but monitoring is perfect (as in RS); 

this treatment allows us to separate the imperfect monitoring effect from the imperfect 

demand information effect. 

                                                 
2 This assumption is needed so that uncertainty about past demand realizations persists into the future.  
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Interestingly, the differential treatment of demand information and monitoring 

assumptions by GP and RS generate theoretical predictions that appear to be “at odds” 

(Ellison, 1994: 38). GP show that price wars in a cartel may be triggered by unusually 

small demand shocks, but RS show that a cartel may experience price wars during 

periods of unusually large demand shocks.3  A usual interpretation of these theories is 

that GP predicts more collusion during booms, while RS predicts more collusion during 

recessions.4 Given the divergent predictions of these theories and our encompassing 

experimental design, we test each theory’s internal validity; this is the second objective of 

this research.  

It is important to point out, however, that GP and RS are not mutually exclusive 

theories, and results from our second objective may well indicate that each model is valid 

in its own domain. Instead, our effort is to investigate the empirical plausibility of each 

theory. Studying each theory’s internal validity is important for at least two reasons. First, 

with field data there is no guarantee that firm behavior that appears to correspond to the 

predictions of a given theory (even if the theory’s assumptions appear to hold) is a 

consequence of the theory at work (e.g. Frechette, Kagel and Morelli, 2005).  Second, 

from a practical perspective, the multiplicity of equilibria in infinitely repeated games 

and the large number of theories on collusion makes it important for empirical 

economists to identify the empirically plausible equilibria from the set of theoretically 

possible equilibria; experiments can be a particularly useful tool in this effort. For 

example, if the predictions of a collusive theory hardly emerge-0., 
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Specifically, we test whether the collusive equilibrium path for which GP is 

known (finite price wars triggered by low demand) is supported by the data. For the RS 

theory, we test the equilibrium prediction that price wars should occur during high 

demand periods whereas collusion should occur otherwise. We also study strategies at the 

individual level to determine whether the strategies implied by each theory constitute a 

reasonable explanation of behavior when compared with other plausible strategies. 

Finally, we study how the RS and GP equilibria explain behavior with respect to other 

possible equilibria.  

Results indicate that monitoring appears to be a critical factor in facilitating 

collusion. Conversely, contrary to conventional wisdom, demand information does not 

appear to have the expected effect on collusion: removing demand information does not 

decrease (and in some cases increases) collusion. The results provide some support for 

both the RS and the GP predictions; however, evidence appears to be stronger for 

permanent price wars (i.e. grim-trigger strategies) rather than the temporary reversions 

for which both theories are known for. This is important as one of the several GP 

equilibria allows for permanent price war, while the RS equilibria do not permit this 

possibility. 

Section 2 reviews the literature while section 3 describes the model. Section 4 

provides details of the experimental design and section 5 describes its implementation. 

Section 6 presents the results and section 7 discusses our main findings. 

2. Literature Review 

Friedman (1971) showed that if firms are patient enough in a non-cooperative 

infinitely repeated game, a trigger strategy (reversion to Cournot production levels when 

market price dropped below a threshold) would produce an equilibrium in which no firm 

has an incentive to deviate. According to this early view, the existence of price wars in 

oligopoly markets was interpreted as a sign of cartel breakdown. However, GP show that 

instead of a symptom of unsuccessful collusion, finite price wars may be part of a 

‘collusive’ equilibrium path. GP modify Friedman’s model by allowing for a stochastic 
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demand structure and imperfect monitoring of rivals’ actions.5 As in Friedman, collusion 

can be sustained through the use of trigger strategies, but now switching from the 

collusive outcome to the competitive outcome (after an unusually low demand state) is 

only temporary. More importantly, the seminal result of this model is that price wars are 

part of the collusive equilibrium path as they constitute a self-enforcing mechanism used 

by successful colluders. 

 RS propose a model with a stochastic environment similar to that of GP. The 

main differences between RS and GP is that firms know next period’s demand shock 

realization prior to setting their quantity (or price) and that firms can perfectly monitor 

rivals’ choices. In this environment, firms’ incentive to deviate from the collusive 

outcome is positively correlated with next period’s demand shock and for unusually large 

(and positive) demand shocks this incentive  more than offsets the expected future losses 

of a reversion to the competitive outcome. A cartel is thereby predicted to be less stable 

during “booms”. To avoid the competitive outcome during large demand shock periods, 

firms limit the incentives to deviation by reducing (increasing) their “collusive” price 

(quantity) below (above) the monopoly level. The resulting collusive equilibrium path 

has firms pricing in a countercyclical fashion.6 

Empirical work assessing the validity of the GP theory has been restricted to data 

from the 19th century Joint Executive Committee (JEC). However, limited data and an 

uncontrolled field environment do not allow a direct test of the GP theory. As a result 

most of the work with these data has been concerned with finding evidence for the 

existence of regime switching between high and low prices (see Ellison, 1994, and 

references cited therein).7 Empirical work on the RS theory has focused on its 

countercyclical pricing prediction; this has been a puzzling issue as it runs 

counterintuitive to conventional wisdom (i.e. a rightward shift in demand should increase 

                                                 
5
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equilibrium price) but is nevertheless frequently observed in many markets (e.g. soft 

drinks during summer, turkey during Thanksgiving). Prior research has tried to explain 

this pattern against other competing models and has found little support for RS as an 

explanatory theory (Chevalier, Kashyap and Rossi, 2003).  

On the experimental front, there has been work studying how demand information 

and monitoring affect collusion/cooperation in repeated games. This literature has 

addressed either monitoring or demand information, but not both, and in rather specific 

ways. The role of imperfect monitoring on collusion has been studied Holcomb and 

Nelson (1991, 1997), Bereby-Meyer and Roth (2006), and Aoyagi and Frechette (2008). 

Holcomb and Nelson study repeated duopoly games in which opponent’s quantity 

choices are randomly changed 
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uncertainty. In different treatments, subjects accessed information about the state of 

demand in different ways.  The main result is that subjects generally decided to share 

information to reduce uncertainty, which led to output reductions. However, in treatments 

where subjects did not have the choice of sharing information, information itself did not 

increase tacit collusion. Feinberg and Snyder claim that uncertain demand shocks do 

interfere with collusion, although few data points and an apparent ‘group effect’ do not 

allow a clear interpretation of the results. 

3. The Model 

The model is based on the prisoner’s dilemma game. There are at least two 

reasons for studying collusion in an environment that is a highly simplified version of the 

models that motivate this research: a) we want to give collusion its best possible chance 

of occurrence - subjects’ coordination on the collusive outcome is less likely if a game 
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Table 1: Typical Payoff Table 

  Player 2 
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through a noisy signal: the market price. These two sources of uncertainty impede firms 

from inferring their opponents’ strategies even after the realization of demand. GP show 

that finite punishment strategies (reversion to H) can be sustained in an equilibrium path 

in which no firm deviates from the collusive agreement. These finite punishment periods 

are triggered by a low market price: since there is imperfect monitoring of rivals’ actions, 

a low price can either denote a negative demand shock or a rival’s deviation. As with 

other cartel models, GP entertain a collusive equilibrium in which no firm has an 
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and the resulting Bellman’s equation is: 
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parameterization 2 the GP equilibrium is feasible with a punishment length of at least 3 

periods.  

Table 2: Payoff Tables for Three Demand States

Parameterization 1 

High Demand (probability=0.2) 

  Player 2 

  L H 

L 26.00 , 26.00 7.50 , 43.00 

Pl
ay

er
 1

 

H  43.00 , 7.50 12.50, 12.50 

 
Medium Demand (probability=0.6) 

  Player 2 

  L H 

L 7.50 , 7.50 2.10 , 12.50 

Pl
ay

er
 1

 

H 12.50 , 2.10 3.50 , 3.50 

 
Low Demand (probability=0.2) 

  Player 2 

  L H 

L 2.10 , 2.10 0.60 , 3.50 

Pl
ay

er
 1

 

H 3.50 , 0.60 1.00 , 1.00 

 

Parameterization 2 

High Demand (probability=0.2) 

  Player 2 

  L H 

L 31.00 , 31.00 9.00 , 43.00 

Pl
ay

er
 1

 

H 43.00 , 9.00 12.50, 12.50 

 
Medium Demand (probability=0.6) 

  Player 2 

  L H 

L 9.00 , 9.00 2.50 , 12.50 

P
la

ye
r 

1 
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Likewise, parameterization 1 is calibrated in accordance with the predictions of the RS 

theory (collusion is an equilibrium only in the medium and low demand states), while 

parameterization 2 is not (i.e. collusion is an equilibrium in all demand states). 

Parameterization 2 also serves to check the robustness of our other main result, namely 

the more prominent role of monitoring (rather than demand information) on collusion. 

Instead of specifying a demand function, the payoff tables are constructed so that 

the percentage difference between payoffs across entries remains invariant across demand 

states. For example, in parameterization 1 the payoff in the collusive outcome is about 

100% higher (with some rounding error) than the payoff in the Nash-Equilibrium. The 

reason for constructing payoff matrices in this fashion is that individuals seem to care 

about relative variation in payoffs rather than the absolute variation (Weber, Shafir and 

Blais, 2004); thus, the potential confounding effect of significant variation in relative 

payoffs across demand states is reduced. 
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strategy after a round’s profit realization.  Payoff tables in parameterization 1 are 

constructed such that the incentive to deviate in the high demand state (LHS of (3)) is 
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their opponent’s choice.18  The motivation for adding this treatment is twofold.  First, 

while demand uncertainty and imperfect monitoring (as assumed by GP) may be 

realistic sometimes, it is plausible that firms accrue information to infer rivals’ past 

actions.  Secondly, this treatment isolates one of the two factors that differentiate the 

FI treatment from the IM treatment. 

The treatments are organized in a 2x2 matrix (Table 3). The perfect demand 

foresight/no monitoring treatment is unfeasible because subjects can infer the opponent’s 

strategy. This yields a 3 (treatments) x 2 (parameterizations) experimental design. 

5. Implementation 

Twelve sessions with a total of 288 subjects were run. Six sessions were run with 

each parameterization (two sessions for each treatment). Subjects were recruited from 

Economics, Statistics and Management courses at the University of Massachusetts-

Amherst. Demographic composition was not unusual for laboratory experiments with 

college students: 40% were females, 72% were white, and the combined number of 

freshmen and sophomores was 51% (with the remaining 49% distributed relatively 

evenly among juniors, seniors and graduate students). Subjects received a $5 show-up fee 

and earned additional money from their decisions; earnings from decisions were in 

experimental dollars ($1=10 experimental $). Average earnings in dollars ($) per session, 

as well as the corresponding dates and number of subjects are presented in table 4. 

Table 3: Experimental Design 
 Monitoring No Monitoring 
Perfect Demand Foresight Full Information (FI) - 
Imperfect Demand Foresight Monitoring (M) Imperfect Monitoring (IM) 

All experiments were computerized and programmed in Z-tree (Fischbacher, 

1999).19 Students were assigned a computer terminal and advised that they would be 

randomly paired with someone else in the room for the duration of the experiment and 

that communication with other participants was forbidden. Special efforts were made to 

achieve subjects’ comprehension and familiarity with the experiment before the start of 
                                                 
18 In order to keep the experimental design consistent across treatments, subjects in the IM treatment are 
informed of the demand state instead of their opponent’s choice. 
19 Instructions and decision screens are available at: http://www.umass.edu/resec/faculty/rojas/z-tree.html 
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the game. Extensive instructions were coupled with 3 practice rounds, each with one 

demand state, and a quiz. If a subject did not respond correctly to a question, the 

participant was approached by the experimenter for explanation.20  

Table 4: Number of Participants and Average Earnings per Session*  
Parameterization 1 

Treatment Full Information Monitoring Imperfect 
Monitoring 

Session Number I II III IV V VI 
Date 04/25/08 04/25/08 04/28/08 04/30/08 04/28/08 04/28/08

# of Participants 24 24 24 24 24 24 
Avg. Earnings $ 25.76 27.13 31.42 30.40 24.74 26.86 

Parameterization 2 
Treatment Full Information Monitoring Imperfect 

Monitoring 
Session VII VIII IX X XI XII 

Date 04/30/08 04/30/08 05/05/08 05/05/08 05/02/08 05/02/08

# of Participants 
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Figure 1: Decision Screen in the Full Information (FI) Treatment (Parameterization 1) 
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Figure 2: Decision Screen in the Monitoring (M) and Imperfect Monitoring (IM) Treatments (Parameterization 1) 
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Figure 3: Profit Screen in the Full Information (FI) and Monitoring (M) Treatments (Parameterization 1) 
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Figure 4: Profit Screen in the Imperfect Monitoring (IM) Treatment (Parameterization 1) 

 

are: 
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All subjects in all treatments were informed about the probability of appearance 

of each payoff table. Subjects played 30 rounds with certainty; after round 30, the 

computer terminated the game with 20% probability. To keep treatments comparable, the 

same draw was used to terminate the game in all treatments; the total number of periods 

turned out to be 33. To determine the demand state (high, medium or low), 33 random 

draws from a uniform distribution were taken once, and the same set of demand states 

implied by these draws was used in all treatments to preserve comparability. 

A round consisted of subjects making a simultaneous decision between low 

output (L) and high output (H) (decision screen, figures 1 and 2); after a decision, 

subjects were informed of profits and the round ended (profit screen, figures 3 and 4). In 

the FI treatment, the decision screen presented subjects with the payoff matrix that they 

would play (figure 1). Conversely, in the IM and M treatments the decision screen only 

reminded subjects of the probability with which each payoff table will be chosen for play 

(figure 2). 

In the M treatment, the profit screen reveals the chosen demand state. Also, this 

screen highlighted the cell in the chosen payoff table that determined the subject’s profit. 

Because the FI and M treatments imply perfect monitoring and demand information after 

the round is played (ex-post), the profit screen for both of these treatments was the same 

(figure 3). In the IM treatment, the profit screen presented subjects with the possible 

outcomes that might have occurred (figure 4), effectively implementing the desired 

imperfect monitoring. 

As depicted in the figures above, the program also contains a history table where 

subjects can see their cumulative earnings. In addition to the experiment on collusion, 

subjects completed a risk task (see Appendix B) and a small survey that contained 

questions on demographics, and on the subjects’ assessment of the clarity of the 

experiment (97% of the subjects believed that the instructions were clear).23 All sessions 

lasted approximately one and a half hours, including instructions.  A total of 9,504 

                                                 
23 Answers to the statement “The instructions for th
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observations were collected (33 rounds x 288 participants). At the end of the experiment, 

subjects were individually called in private and were paid their cumulative earnings from 

the task in cash. 

6. Results 

6.1 Effect of Demand Information and Monitoring 

For each of the three treatments, table 5 presents the frequency of individual cooperation 

(at least one player chooses the collusive outcome - L)24 as well as the frequency of 

collusion (both players choose L) for the two parameterizations considered. Contrary to a 

stylized fact in industrial organization, when demand information is removed (from Full 

Information to Monitoring), cooperation and collusion increase in parameterization 1 and 

appear unchanged in parameterization 2. Conversely, cooperation and collusion diminish 

in both parameterizations when imperfect monitoring is introduced (from Monitoring to 

Imperfect Monitoring). 

Table 5: Frequencies of Cooperation and Collusion (standard deviation) 

Treatment Parameterization Frequency of 
Cooperation*

Frequency of 
Collusion**  

1 0.72 (0.45) 0.51 (0.50) Full Information 
2 0.83 (0.38) 0.71 (0.46) 
1 0.76 (0.42) 0.59 (0.49) Monitoring 2 0.84 (0.37) 0.71 (0.46) 
1 0.63 (0.48) 0.31 (0.46)  Imperfect Monitoring 2 0.66 (0.47) 0.41 (0.49) 

      * At least one player chooses L. ** Both players choose L. # of observations in all treatments is 1,584 
We test and confirm these observations using several non-parametric tests 

(Wilcoxon, Kolmogorov-Smirnov, Pearson’s Chi-square and Epps-Singleton) as well as 

the parametric t-test: frequencies (for both cooperation and collusion) in parameterization 

1 are statistically larger in the M treatment than in the FI treatment (all p-values<0.01), 

but frequencies from these two treatments are not statistically different from each other in 

parameterization 2 (p-values>0.39); frequencies (for both collusion and cooperation) in 

both parameterizations are statistically larger in the M and FI treatments when 

(individually) compared with the IM treatment (all p-values<0.01). Finally, using the 
                                                 
24 Alternatively, one can define cooperation as the number of “L” choices (a smaller number). The results in 
the paper are invariant to either definition. 
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same battery of parametric and non-parametric tests, the level of cooperation and 

collusion in a given treatment is statistically larger in parameterization 2 (p-values<0.01), 

except for cooperation in the IM treatment (p-values tests range from 0.05 to 0.39). It 

important to note that the described results support theoretical predictions: 

a) As noted earlier, the incentives to collude are stronger in parameterization 1, 

regardless of the treatment. Further, in the FI treatment, parameterization 2 implies 

that the left hand side of (2) is smaller than its right hand side for all three demand 

states, whereas in parameterization 1 this is true only for the medium and low demand 

states (deliberately, to test the RS theory); this reinforces the fact that a larger amount 

of collusion should be observed in parameterization 2 in the FI treatment. 

b) In the M treatment, collusion is an equilibrium if the following condition (a modified 

version of equation (1)) is met: 

( ) [ ( )]
1

D NE C NE
s s s sE Eδ

δ
Π −Π < Π −Π

−
   

0.2( ) 0.6( ) 0.2( ) 0.2( ) 0.6( ) 0.2( )
1

D NE D NE D NE C NE C NE C NE
h h m m l l h h m m l l

δ
δ

Π −Π + Π −Π + Π −Π < Π −Π + Π −Π + Π −Π
−

 (5) 

where ( ) 0.2( ) 0.6( ) 0.2( )C NE C NE C NE C NE
s s h h m m l lE Π −Π = Π −Π + Π −Π + Π −Π . In 

parameterization 1, the left hand size of equation (5) is equal to 6.68 and the right 

hand side is equal to 15.96; this inequality is even more pronounced in 

parameterization 2: the left hand size of equation (5) is equal to 4.70 and the right 

hand side is equal to 21.90.25 Assuming no mistakes by subjects, we should rarely 

observe deviations from cooperation/collusion in this treatment (especially in 

parameterization 2). 

c) Theoretically, if the GP equilibrium were supported by the data, larger levels of 

collusion and cooperation should be expected in parameterization 2 as the collusive 

scheme predicted by GP can not be an equilibrium in parameterization 1. This only 

holds for collusion, however. 

                                                 
25 These numbers correspond to the case of risk neutrality. After adjusting for the level of risk aversion 
observed in our sample (see Appendix B), the inequalities remain unchanged: 1.89 (left hand side) and 5.99 
(right hand side) for parameterization 1 and 1.28 and 7.82 for parameterization 2. 



 24

Figures 5A and 5B show the frequency of cooperation throughout the 33 periods 

of the experiment, in both parameterizations. The figures confirm the higher level of 

cooperation in the FI and M treatments (with respect to the IM treatment) in both 

parameterizations. Also, the figures confirm the higher cooperation rate in the M 

treatment than in the FI treatment in parameterization 1 (5A), and the similar cooperation 
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Figure 5: Frequency of Cooperation over 33 Periods of Stochastic Demand: h=high [---], 
m=medium or l=low [—]; by Parameterization (in parenthesis) 
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Figure 6: Frequency of Cooperation over 33 Periods of Stochastic Demand: h=high [---], 
m=medium or l=low [—]; by Treatment (parameterization) 
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Table 6: Frequencies of Cooperation and Collusion in FI Treatment (St. Dev.) 

All Observations (Periods 1-33) Periods 1-25 

Demand 
State 

Pa
ra

m
et

er
iz

at
io

n 
# 

Obs. 
Freq. 

Coop.* 
Freq. 

Collusion** # Obs. Freq. 
Coop.* 

Freq. 
Collusion**

1 288 0.58 (0.49) 0.42 (0.49) 240 0.58 (0.49) 0.43 (0.50) High  
(h) 2 288 0.78 (0.42) 0.65 (0.48) 240 0.80 (0.40) 0.67 (0.47) 

1 1,008 0.73 (0.44) 0.52 (0.50) 720 0.78 (0.42) 0.56 (0.50) 
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Note that all these strategies can be defined as trigger strategies, each with three 

characteristics: a) the type of trigger, b) the duration of reversion to the non-cooperative 

outcome, and c) the rule for returning to the collusive outcome. It is important to note, 

however, that while RS
ts  is a trigger-like strategy, it tests whether subjects are on the 

equilibrium path predicted by RS; that is, the trigger strategy upon which the RS 

prediction is based (i.e. reversion to the NE forever if deviation occurs in the medium and 

low demand states) is not observed. Put differently, RS
ts  tests whether the equilibrium 

outcome predicted by RS occurs, whereas its∞ , for example, tests whether subjects use a 

strategy that is consistent with the conditions needed to obtain the RS equilibrium (i.e. the 

grim-trigger strategy). In a sense, then, RS
ts  entails a demanding test of the RS theory.  
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While searching for patterns that may explain subjects’ strategies better than the RS 

theory alone, informal inspection of the data revealed that subjects may appear to be 

basing their strategies on both the demand state (high or not) as well as on their 

opponent’s choice; the last column presents the estimates of this “combined” strategy. 

In all specifications, the statistical significance of 
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Table 8: Probit Estimates of Different Strategies in the FI treatment, Parameterization 1, Rounds 1-25 

Parameter Random RS tt P-1 P-2 P-3 P-4 P-5 P-6 P-¤  RS + tt 

a     -0.80*** -0.66   -0.97*  -0.88** -0.93** -0.85** -0.90** -0.88** -0.86** -0.69* -0.86** 

 (0.43) (0.46) (0.36) (0.42) (0.39) (0.39) (0.36) (0.36) (0.35) (0.16) (0.38) 

1g   0.92*         0.99* 

  (0.14)         (0.14) 

2g        0.56*        0.68* 

   (0.12)        (0.12) 

3g     0.17 0.37* 0.23** 0.51* 0.49* 0.53* 2.39*  

    (0.11) (0.11) (0.12) (0.12) (0.13) (0.14) (0.24)  
y     2.40* 2.56*     2.03*   2.31* 2.20* 2.20* 2.02* 2.03* 1.98* 0.69* 2.14* 

 (0.52) (0.53) (0.43) (0.48) (0.46) (0.45) (0.41) (0.42) (0.41) (0.23) (0.44) 
ρ     0.69* 0.72* 0.60* 0.67* 0.65* 0.65* 0.60* 0.61* 0.59* 0.69* 0.63* 

LL -450.84 -427.84 -440.41 -449.80 -445.30 -449.17 -443.37 -444.33 -444.16 -422.07 -413.77 

LR Test  

(p-value)† 

N/A 46.00 

(<0.01) 

20.85 

(<0.01) 

2.07 

(0.15) 

11.08 

(<0.01) 

3.34 

(0.07) 

14.94 

(<0.01) 

13.01 

(<0.01) 

13.35 

(<0.01) 

57.53 

(<0.01) 

74.13 

(<0.01) 

* Significant at 1%. ** Significant at 5%. *** Significant at 10%.  †
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Equilibrium Outcomes 

As opposed to the econometric model presented above, the focus of the analysis 

here is on equilibrium outcomes rather than on individual strategies. Specifically, we 

analyze how the data lends support to the different feasible equilibria presented in 

Appendix A (table A.1). Table 9 displays the frequencies of the outcomes observed in 

each of the three demand states; the bold numbers indicate that the cell is a feasible 

equilibria. There are several patterns worth noting. First, collusion (L,L) is the most 

frequently observed outcome, except when theory predicts it is not an equilibrium (high 

demand, parameterization 1). Second, (H,L)/ (L,H) is the least frequently observed 

outcome, except in one case (low demand, parameterization 2). Third, within a 

parameterization, collusion appears a more likely outcome during “bad times” (i.e. its 

frequency decreases as demand becomes larger), whereas the one-shot NE becomes more 

likely during “good times”; the frequency of the (H,L)/(L,H) equilbria, on the other hand, 

is relatively stable within a parameterization. 

   Table 9: Frequencies of Observed Outcomes 
Demand State (outcomes) Parameterization 1 Parameterization 2 

High (h) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

41.67% 
42.36% 
15.97% 

65.28% 
22.22% 
12.50% 

Medium (m) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

51.79% 
26.59% 
21.63% 

70.44% 
17.46% 
12.10% 

Low (l) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

57.64% 
21.53% 
20.83% 

75.69% 
11.11% 
13.19% 

Notes: Bold numbers indicate that entry is a feasible equilibrium (see Appendix A for details) 

 To contrast the predictive power of the RS equilibrium with that of other feasible )/(
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indicator variable predicts collusion (C) and compare them with the frequencies of 

cooperation and collusion when the indicator variable predicts a price war (R). 

Table 10 reports the cooperation and collusion frequencies during the two 

regimes, as predicted by the different lengths of punishment after price drops to p2 (or 
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Subjects’ Strategies 

Recall that the basis for the GP equilibriu
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Table 11: Strategies Considered and Corresponding Variables, IM treatment 
Strategy itzγ  Definition 

Random N/A N/A 

GP, with: 
N = 1,…, ∞ 1

NGP
tsg  

1

1

1 ( 1)

For 1:   1

1    if  =1 and demand=high or medium

     or  =0 and =1 

0   otherwise

N

N

N NL

GP

GP
t
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These strategies allow several possibilitie
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Table 12: Probit Estimates of Different Strategies in the IM treatment, Rounds 1-25 
 

R
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m

 
GPN 

1NT   
{N} 

1NTT  
{N} 

2T  2TT  

Parameterization 1 

1k p= 2 2k p= 2 1( )k L p=

0( )k H p=  3 4( )up
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The evidence presented in table 12 is interpreted as providing support for the 

existence of trigger strategies in general, a
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in our design. Appendix D reports the results of the estimations, which strongly confirm 

the latter finding. Conversely, the evidence for the RS theory still exists but is not as 

strong as in parameterization 1. In particular, the tit-for-tat and the grim strategies now 

appear to describe data better than the RS strategy. 

Table 13: Fraction of Times the Equilibrium Path Correctly Predicts Outcomes  
Equilibrium Path Parameterization 1 Parameterization 2 
(H,H) every period 
GP3 
GP4 
GP5 
GP6 
GP15 
GP16 
GP17 
GP18 
GP∞ 

36.87% 
50.00% 
56.82% 
48.48% 
52.27% 
66.16% 
67.68% 
68.69% 
70.20% 
71.72% 

33.59% 
50.63% 
53.91% 
48.36% 
51.14% 
60.48% 
60.73% 
61.74% 
61.74% 
62.25% 

Notes: Bold numbers indicate a theoretically feasible equilibrium (see Appendix A for details). The 
GPN path takes a value of 1 when collusion is predicted and 0 when a price war is predicted; a price 
war is assumed to be triggered by a low signal (price≤p2) which lasts N periods. 

With the observed level of risk aversion, the set of GP equilibria gets larger (see 

Appendix B). Specifically, the GP equilibrium becomes feasible in parameterization 1 for 

punishment lengths that range from 6 periods to ∞. Another possible equilibrium emerges 

for parameterization 2: with threshold level p1, the feasible range of punishment lengths 

for the GP equilibrium is [6,..,∞]; in addition, the punishment length for a threshold of p2 

increases its range to [2,..,∞]. This attenuates our interpretation of the results regarding 

the similar behavior across parameterizations being construed as lack of evidence for the 

incentives implied by the GP equilibrium. In addition, since p1 is now a threshold level 

that yields feasible GP equilibria, the estimation results for strategy T1 are no longer 

inconsistent with the GP predictions. 

We still note, however, that the finite punishment behavior for which GP is 

known does not describe the data as well as the infinite punishment strategy. To be sure, 

we carried out an additional check: we varied the random draws that determine the 

demand states and conducted additional sessions with parameterization 2. Our main 

results are robust (Appendix D). 
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8. Discussion 

In this paper we focus on two factors (demand information and monitoring) that 
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The traditional (or simple) interpretation of the RS model is that it is a theory of 

countercyclical pricing (temporary low price during high demand), whereas the GP 

theory is usually attributed with
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In general, we find that the RS environm
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APPENDIX A: Equilibrium Set 
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A.2 The Imperfect Monitoring Treatment (GP theory) 

As with the FI treatment, it is easy to show that the playing the one shot NE (H,H) in 
every period is an equilibrium of this game. Collusion, on the other hand, can be 
sustained through the use of trigger strategies; but, as opposed to the RS equilibrium, 
collusion here refers to a “collusive path” rather than observing (L,L) every period: 
reversion to the NE play is part of the equilibrium path for some period of time (finite or 
infinite). This is an important difference because observing reversion to the NE play in 
the RS model may be consistent with RS strategies but inconsistent with the RS 
equilibrium path, whereas in the GP model reversion is consistent with both equilibrium 
strategies and the equilibrium path.ii 

Table A.1: Feasible Equilibria by Demand State and Parameterization in the FI 
Treatment, (strategy pair), [range of feasible punishment lengths “N”] 
Demand State Parameterization 1 Parameterization 2 Parameterization 3 

High (h) 
 
(H,H) 
(H,L)/(L,H) [2-∞] 

(L,L) [3-∞]* 
(H,H) 
(H,L)/(L,H) [1-∞] 

 
(H,H) 
 

Medium (m) 

High (h) 
 

Medium (m) 

High (h) 
 

Medium (m) 
(H
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Table A.2: Feasible Equilibria in the IM Treatment, (choices),[range of feasible 
punishment lengths “N”] 

Equilibrium Path Parameterization 1 Parameterization 2 
(H,H) every period Yes Yes 
Trigger: (L,L) as long as 
observed p greater than: 

  

0p  No No 

1p  No No** 

2p  No* Yes [3-∞]*** 

3p  No No 

4p  No No 
Notes: Parameterization 3 is not considered as it does not have the imperfect .0013i imperfect cb
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Appendix B: Risk Aversion Estimate and Parameterization Details 

B.1. Risk Aversion Estimate 

The underlying assumption of the theories studied in this paper is that subjects are risk 
neutral, or that utility is of the form ( )u x x= , where x  is the monetary payoff. To allow 
for the possibility of risk averse (or risk seeking) behavior, we adopt the widely used 
constant relative risk aversion (CRRA) utility specification: 
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APPENDIX C: Imperfect Public Monitoring 
 
Consider parameterization 1. Without loss of generality, let’
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APPENDIX D: Results of Robustness Checks 

First, we constructed an additional parameterization (table D.1), to address the potential 
drawback caused by subjects’ risk aversion in the analysis of the evidence for the RS 
theory (see appendix A). To achieve the desired critical discount factors in the presence 
of risk aversion, however, the imperfect monitoring characteristic could no longer be 
maintained; thus, sessions were run only for the FI and M treatments.i A total of 102 
subjects from the University of Massachusetts participated in 3 sessions (2 for treatment 
FI and 1 for treatment M); mean earnings (excluding show up fee and risk task payments) 
were $19.12 for the FI treatment and $19.40 for the M treatment. Further, 
parameterization 3 also serves as a robustness check for our other main finding (demand 
information removal does not decrease collusion).  

Second, to check the robustness of the GP results, we ran additional sessions with 
parameterization 2 but varied the random draws that determine the demand states. These 
draws can be seen in figure D.1 below; we call it parameterization 2b. A total of 74 
subjects from the University of Massachusetts participated in 4 sessions (2 for the IM 
treatment and 1 for each of the other two treatments). Average earnings were $31.06, 
$33.42 and $24.73 for the FI, M and IM treatments, respectively. In addition, 
parameterization 2b also allows us to further check the results obtained in the analysis of 
evidence for the RS treatment. 

Table D.1: Parameterization 3 
  High Demand  Medium Demand  High Demand 

  Player 2  Player 2  Player 2 

  L H  L H  L H 

L 17.00, 17.00 2.00, 31.00  5.00, 5.00 0.50, 9.00  1.40, 1.40 0.20, 2.50 

Pl
ay

er
 1
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Table D.2: Frequencies of Cooperation and Collusion (standard deviation) 

Treatment Parameterization # Obs. Frequency of 
Cooperation*

Frequency of 
Collusion**  

2b 660 0.87 (0.33) 0.62 (0.49) 
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frequency of collusion in the medium demand state is not statistically different than that 
observed in the low demand state. 

Turning to the analysis of individual strategies, the regressions reported in table 
D.4 still provide support for the RS strategy, but this evidence is not as strong as in 
parameterization 1. In particular, the TT strategy has a higher explanatory power than the 
RS strategy; the grim strategy continues to be the most significant (single) strategy and it 
can even explain data better than the combined RS+TT strategy. 

Table D.3: Frequencies of Cooperation and Collusion in Full Information Treatment (St. 
Dev.) 

All Observations (Periods 1-33)  Periods 1-25 
Demand 

State 

Pa
ra

m
. 

# Obs. Freq. 
Collusion**  # Obs. Freq. 

Collusion** 
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medium state). When compared with parameterization 2, observed outcomes for 
parameterization 2b are somewhat different, however; the main difference is that here the 
collusive outcome is observed less frequently (especially in the high demand state), while 
the (H,L)/(L,H) outcome is now observed much more frequently. This is our least strong 
robustness result.  

The non-parametric tests are, however, consistent with what was reported in the 
paper. The best fit in parameterization 3 is given by the RS equilibrium (51%) followed 
by the “always collude” outcome (48%), the “always defect” outcome (35.61%), and the 
(H,L)/(L,H) outcome (16.11%). On the other hand, the best fit in parameterization 2b is 
given by the “always collude” outcome (65%), the RS equilibrium (64%), the (H,L)/(L,H) 
outcome (25.76%), and the “always defect” outcome (12.73%). Again, the evidence from 
parameterzation 2b is not as conclusive as that of parameterization 2.iii 

Table D.5: Frequencies of Observed Outcomes 
Demand State (outcomes) Parameterization 2b Parameterization 3 

High (h) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

44.00% 
24.00% 
32.00% 

41.67% 
46.88% 
11.46% 

Medium (m) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

64.76% 
11.43% 
23.81% 

49.11% 
36.01% 
14.88% 

Low (l) 
(L,L) 
(H,H) 
(H,L)/(L,H) 

64.29% 
8.57% 
27.14% 

52.08% 
22.92% 
25.00% 

Notes: Bold numbers indicate that entry is a feasible equilibrium (see Appendix B, table B.1 for details) 

D.3 Evidence for the GP theory 
Table D.6 is consistent with the results obtained for parameterization 2 (reported in table 
10 of the paper): large punishment lengths tend to explain cooperation and collusion 
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Table D.6: Frequencies of Cooperation and Collusion in Collusive (C) and Reversionary 
(R) Regimes in IM treatment, Various Punishment Lengths, Rounds 1-25, 
Parameterization 2b 

Cooperation Collusion Punishment 
Length (N) R C p-

value* R C p-
value* 

2 0.68 0.67 0.73 0.18 0.24 0.11 
3 0.69 0.67 0.60 0.21 0.23 0.46 
4 0.66 0.70 0.25 0.19 0.26 0.01 
14 0.66 0.78 0.02 0.19 0.44 <0.01 
15 0.66 0.78 0.02 0.19 0.44 <0.01 
∞ 0.65 0.94 0.02 0.19 0.44 <0.01 

Note: Bold numbers indicate that the entry entails a feasible punishment length in the GP equilibrium. The 
results are qualitatively similar if all rounds (1-33) are considered. Consistent with theory, the public signal 
assumed to trigger a price war is p2. 
* Pearson’s Chi-Square statistic; p-values of other non-parametric tests (Wilcoxon, Kolmogorov-Smirnov, 
and Epps-Singleton) and the parametric t-test produce similar p-values. 
 
Table D.8: Fraction of Times the Equilibrium Path Correctly Predicts Outcomes 
(Predictive Power) 

Equilibrium Path Parameterization 2 
(H,H) every period 
GP3 
GP4 
GP5 
GP14 
GP15 
GP∞ 

37.98% 
40.40% 
50.51% 
60.61% 
75.96% 
78.18% 
81.21% 

Notes: Bold numbers indicate a theoretically feasible equilibrium (see Appendix B, table B.1 for details). 
The GPN path takes a value of 1 when collusion is predicted and 0 when a price war is predicted; a price 
war is assumed to be triggered by a low signal (price≤p2) which lasts N periods. 
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Table D.7: Probit Estimates of Different Strategies in the IM treatment, Rounds 1-25, Parameterization 2b 
 

R
an

do
m

 
GPN 

1NT   
{N} 

1NTT  
{N} 

2T  2TT  

1k p= 2 0k p= 2 1( )k L p=

0( )k H p=  3 
1( )downk L p= , 

0( )downk H p=  
  

N=51 N=13 N=∞ 
{5} {¤ } {¤ } {¤ } 

1
downk p=

 

3
upk p=

 

1
downk p=

 
4

upk p=
 

4( )upk L p=  
2( )upk H p=

4( )upk L p=  
3( )upk H p=

g  N/A 0.39* 0.50* 0.61* 0.63* 0.92* 0.48* 0.60* 0.90* 0.92* 0.55* 0.62* 
LL -437.66 -431.13 -431.1 -430.0 -420.4 -415.9 -430.98 -425.8 -416.0 -415.9 -426.90 -424.89 
LR† 
p-value 

N/A 13.04 
<0.01 

13.15 
<0.01 

15.28 
<0.01 

34.38 
<0.01 

43.35 
<0.01 

13.35 
<0.01 

23.68 
<0.01 

43.23 
<0.01 

43.35 
<0.01 

21.52 
<0.01 

25.54 
<0.01 

Notes: Estimates of a , r  and y  are significant at the 1% level in all specifications (not shown). Number of observations: 1,200 in both parameterizations. 

s
p

e
c

i
f

i
c

a
t

3
7

8
.

9
6

1
7

4
 

0
.

4
 

s
h

o
6

3
.

8
(

w
)

-
0

2
4


