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BLP (1995) Demand Estimation

e Berry, Levinsohn and Pakes (1995) or “BLP” consists of an
economic model and a GMM estimator

e Demand estimation with a large number of di [erkntiated
products

Product characteristics approach

Requires only aggregate market share data
Flexible substitution patterns / price elasticities
Controls for price endogeneity

e Computational algorithm to construct moment conditions from
nonlinear model

e Useful for measuring market power, welfare, optimal pricing,
etc.

e Used extensively in industrial organization and marketing
e Nevo (2001), Petrin (2002), Sudhir (2002), ...
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Computational concerns of BLP users and non-users

e Method, if it delivers, is clearly very useful

e Not tons of good alternatives
e Useful in antitrust, consulting, in addition to academic research

@ Takes time to learn how to correctly code and use
e Typical applied user: no formal training in implementation?

e BLP (1995) somewhat dense
e Nevo (2000) has some advice
e Concern: reliability of empirical results

e No point in using fancy estimator if you are going to report
wrong estimates

o Knittel & Metaxoglou (2008) alarmist message

e New research on dynamic demand, up to four inner loops

e Gowrisankaran & Rysman (2008), Lee (2008), Schiraldi (2008)

@ Our broad goal: document some (computational) concerns
and o [Lerlsome solutions
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BLP’s estimation algorithm

o Nested Fixed Point (NFP) approach

o Nest fixed point calculation (inner loop) into parameter search
(outer loop)

Propose contraction mapping to calculate fixed point
Our concerns

e Trade o[idner loop numerical error versus speed
e Error in inner loop propagates into outer loop
e Wrong parameter estimates

Concern regards NFP algorithm, not actual statistical
properties of BLP

Our solution is MPEC

e Mathematical program with equilibrium constraints

e MPEC & NFP are statistically the same estimator (Berry,
Linton & Pakes 2004)

e See Su & Judd (2008) for non-demand applications
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Our contributions

@ Analyze numerical properties of the NFP algorithm
@ Poor implementation can lead to wrong parameter estimates
© MPEC: alternative computational method

e Impossible to have same numerical errors as NFP
e Can execute faster than NFP
e Applies to models where contraction mapping does not exist

e Richer static models, Gandhi (2008)

e Many forward-looking, dynamic demand models

e Even models with multiple demand shocks to satisfy market
shares?

@ Issues with NFP more severe in dynamic demand applications

e Multiple nested loops
e Bellman iterations more computationally expensive
e MPEC’s advantage may be even greater in these cases
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Discrete choice demand model

.. —= 0 0 x PR. . "o
Uijt = i+ Xt i iPit+ et it

Consumer i, choice j 2 J, market t 2 T
Product characteristics Xj ¢, Pj.t, j.t

e j;t hotin data

o 02, X, Prandom coe [ciehts

e Distribution F ( ; )
e BLP’s statistical goal: estimate in parametric distribution

i j,t extreme value shock (logit)
i picks jifuijt Uixe8k2Jk &j
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Inner loop of NFP approach

e Compute numerically
()=s '(S;)

e BLP propose a contraction-mapping
e For each guess iterate on

tF00 [(£)]36 Tf -10.305 0F001nF5115rac(t)]70390.9764feac(t)]7









Contraction Mapping Theorem
Some details skipped

e Assume that T is a contraction mapping:

TOTO LO



Lipschitz constant for BLP contraction mapping

e can show it’s related to Jacobian of iteration operator

L=r£112a5<kl r (logs (; ))k;

O(log sje (£;6))

where Dt is, for j =1 and j & | respectively
20 . 1 0 . 1,3
)(9@ EXp X apie + e A eXp X apje + e AL
L L
r=1 1+ ﬁ:l exp X;Oqﬂr afpre + ke 1+ Jk=1 exp Xﬁtﬁr afpre + &kt
b4 exp X8 a'pie + &t
1+ 3 exp xU.BT  alpe +
r=1 k=1 EXP Xy Pit + &kt
20 S 1 13
PTG e LA A _exp XiB api + &
Ll Ll
s 1 R X BT aPe b 1 R exp xS alpue + ke

> exp xpA" o' + e
D

1_,_'—3 0 3r r +
r=1 k=1 8XP X 8" Pt + ke

Dubé, Fox and Su Numerical Performance of BLP



=)

«F



Loose inner loop + numerical derivatives = bad news

Application of Lemma 9.1 in Nocedal & Wright (2006)

@ Most scholars use smooth optimizers, which use gradient
information

e Gradient often approximated by numerical derivatives

. - 163
O ( ()= Q( ( +de; m))ZdQ( ( dey; in))

k=1
e Gradient error bounded

1 L()

krgQ( (;in) rQ(C (;0)ky O d? +ao T LO) in

@ Search algorithm could go in wrong direction because of
numerical error!
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Simulated data setup




Simulation draws

Goal is not to discuss error from numerical integration

Use same 100 draws in numerical integrals in data creation
and estimation

No numerical error from integration
In practice, multiply all computing times by 100
e 10,000 draws

Not clear fewer draws favors either NFP, MPEC
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Software details

e MATLAB, highly vectorized code
o Parallelizes well

e Optimization software KNITRO
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Nevo’s cereal data: Loose versus tight tolerances for NFP

With closed-form derivatives

NFP NFP NFP
Loose Loose Tight
Inner Both
Fraction Convergence 0.0 0.81 1.00
Frac.< 1% > “Global” Min. 0.0 0.0 1.00
Mean Own Price Elasticity -3.75 -3.69 -7.43
Std. Dev. Own Price Elasticity 0.03 0.08 ~0
Lowest Objective 15.3816 | 15.4107 | 4.5615
Elasticity for Lowest Obj. -3.77 -3.77 -7.43
@ Nevo (2000) cereal data (pseudo-real) — prices, quantities,
characteristics across multiple markets
e 25 starting values
e NFP loose inner loop: in =10 4, out =10 ©
e NFP loose both: in =10 4, out = 10 2
o NFP tight: i, =10 , o, =10
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Multiple local minima / Knittel and Metaxoglou (2008)

e We find NFP with tight inner loop often finds global minimum
e Multiple local minima do exist, but not insurmountable

@ They used NFP and 50 starting values

e They claim BLP unreliable because di[erent starting values
find di Lerknt local optima






Our alternative constrained optimization approach

e MPEC (general idea from Su & Judd 2007)

min g ()'Wg ()
subject to s(; )=






MPEC advantages vs. NFP

@ No nested contraction mapping
e No numerical error from inner loop

e Can be faster

e Contraction mapping converges linearly vs. Newton’s method
(MPEC) converges quadratically

e Market share equations hold only at final solution, not at every
iteration

e Market share equations exposed to optimizer

e Optimizer has gradient and sparsity pattern of constraints to
exploit

e Objectives, constraints less nonlinear in parameters

e Larger, smoother, sparser problem can be easier than smaller,
rougher, denser problem

e Can be applied to models where there is no contraction
mapping
e Uniqueness (Gandhi 2008)
e No uniqueness?

Dubé, Fox and Su Numerical Performance of BLP



Lipschitz constants for NFP contraction mapping

Parameter Std. Dev. of # of Mean of Intercept
Scale Shocks ¢ Markets T E &

Value Lipschitz | Value Lipschitz | Value Lipschitz | Value Lipschitz
0.01 0.985 0.1 0.808 25 0.860 -2 0.771
0.1 0.971 0.25 0.813 50 0.871 -1 0.871
0.50 0.887 0.5 0.832 100 0.888 0 0.936
0.75 0.865 0.871 200 0.888 1 0.971

1 0.871 0.934 2 0.988
1.5 0.911 0.972 3 0.996
2 0.938 20 0.984 4 0.998
3 0.970
5 0.993
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Speeds, # convergences and finite-sample performance

Intercept | Lips. Routine Runs CPU | Own-Price Elasticities

E 3° Const. Conv. | Times | Bias RMSE
-2 0.806 | NFP tight 1 1184.1 | 0.026 0.254
MPEC 1 1455.1 | 0.026 0.254

-1 0.895 | NFP tight 1 1252.8 | 0.029 0.258
MPEC 1 1528.4 | 0.029 0.258

0 0.950 | NFP tight 1 1352.5 | 0.029 0.265
MPEC 1 1564.1 | 0.029 0.265

1 0.978 | NFP tight 1 1641.1 | 0.029 0.270
MPEC 1 1562.5 | 0.029 0.270

2 0.991 | NFP tight 1 2498.1 | 0.030 0.273
MPEC 1 1480.7 | 0.030 0.273

3 0.997 | NFP tight 1 5128.1 | 0.031 0.276
MPEC 1 1653.9 | 0.030 0.278

4 0.999 | NFP tight 1 9248.5 | 0.032 0.279
MPEC 1 1881.8 | 0.031 0.279
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Lessons learned

@ For low Lipschitz constant, NFP and MPEC can be about the
same speed






Field data: Nevo’s cereal data

o NFP finds same local minimum for all 50 runs with objective
function 4.5615

o MPEC finds same local minimum for 48 of 50 runs with
objective function 4.5615

@ Avg. CPU time: 763.14 sec (NFP) vs. 544 sec (MPEC)
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Extension: Dynamic BLP with forward-looking consumers

e Consumers have expectations over future
o Real option value of no-purchase: delay choice to future

e Durable goods with declining prices
e Stockpiling with temporary discounts
e Purchasing upgrades and resale of existing products

e Melnikov (2002), Nair (2007), Gowrisankaran and Rysman
(2007), etc.

e Still endogeneity / stochastic model motivations for demand
shocks ¢
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Example: durable goods with falling prices

e J =2 products, R consumer types, T time periods
log (Pi) =Pt 1§+ jt

e Expected Value of waiting
C

Vg (pe;07) =8 max

D
dF (e)dF ; (¥,¢)

nV§ Pioj + 40" +eo o
maxj G af pipj+Y +§+g

8
% L Pr(l)= 1

R 1
% R Pr(R)=1 LT
r=
e Joint density of (jt; j©) N(O; )

h
o Tastes N =
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An MPEC approach to dynamic demand

Optimization problem

@ 1 1.,/ 1 H P
max 33 1 EXp 5Ut u Ut JJtumy]
;5 vg t=1(2 )2j j2

subject to S(;0) =S8t =1,...,T

p &P (V(Pap + )+ ...
and V5 (pa) =3log@ "~ exp B o (pgp+y)+& AR (4,8)
J

8d2D,r=1,...,R.

1

Constrained optimization combines

e Maximization of likelihood
e Dynamic programming
o Market share inversion / demand shocks
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Early results from a Monte Carlo study

Bias RMSE
0 MPEC NFP MPEC NFP
G4 7.5E-03 4.6E-02 | 1.7E-01 1.5E-01
B2 -1 6.2E-03 ~ 3.7E-02 | 1.5E-01 1.2E-01
a:-0.15 -1.1E-04 -2.9E-04 | 8.0E-04 5.4E-04
p
int; : 5 9.4E-03 19E-02 | 4.9E-02 4.6E-02
p1a: 0.8 9.5E-05 -2.1E-04 | 1.2E-03 1.2E-03
p12 1 0.2 -1.6E-04 -3.8E-05 | 1.5E-03 1.7E-03
int : 5 8.9E-03  6.6E-04 | 5.9E-02 3.2E-02
pa1: 0.1 -7.0E-05 1.5E-04 | 1.1E-03 5.6E-04
p2:2 . 0.55 -6.5E-05 -4.5E-04 | 1.4E-03 8.8E-04
chol( )
1 -4,1E-03  -4.5E-03 | 1.7E-02 1.7E-02
0.866 -1.7E-03 -5.5E-04 | 1.5E-02 1.4E-02
0.5 -7.9E-04 -2.4E-03 | 2.0E-02 1.9E-02
Avg CPU time (sec) 4579 16,971 4579 16,971
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Conclusions

e BLP very important innovation in demand estimation
e Concerns with NFP algorithm
e Can be slow
e Numerical derivatives + loose inner loop can lead to incorrect
parameter estimates
e MPEC applied to BLP
e Can be faster
e Especially when NFP’s Lipschitz constant close to 1
e Fewer numerical errors
e No inner loop to propagate errors
e Can apply to models where there is no contraction mapping
o Degree of advantage of MPEC over NFP may increase with

dynamic BLP

o NFP nests multiple inner loops
e Typically linearly convergent contraction mappings
o Amplifies benefits of quadratic convergence in MPEC
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