Improving the Numerical Performance of BLP Static and Dynamic Discrete Choice Random Coe cients Demand Estimation

Jean-Pierre Dubé¹ Jeremy T. Fox² Che-Lin Su³

¹University of Chicago, Graduate School of Business
 ²University of Chicago, Dept. of Economics, and NBER
 ³University of Chicago, Graduate School of Business

FTC Conference November 2008

BLP (1995) Demand Estimation

- Berry, Levinsohn and Pakes (1995) or "BLP" consists of an economic model and a GMM estimator
- Demand estimation with a large number of di erentiated products
 - Product characteristics approach
 - Requires only aggregate market share data
 - Flexible substitution patterns / price elasticities
 - Controls for price endogeneity
- Computational algorithm to construct moment conditions from nonlinear model
- Useful for measuring market power, welfare, optimal pricing, etc.
- Used extensively in industrial organization and marketing
 - Nevo (2001), Petrin (2002), Sudhir (2002), ...

Computational concerns of BLP users and non-users

- Method, if it delivers, is clearly very useful
 - Not tons of good alternatives
 - Useful in antitrust, consulting, in addition to academic research
- Takes time to learn how to correctly code and use
- Typical applied user: no formal training in implementation?
 - BLP (1995) somewhat dense
 - Nevo (2000) has some advice
- Concern: reliability of empirical results
 - No point in using fancy estimator if you are going to report wrong estimates
 - Knittel & Metaxoglou (2008) alarmist message
 - New research on dynamic demand, up to four inner loops
 - Gowrisankaran & Rysman (2008), Lee (2008), Schiraldi (2008)
- Our broad goal: document some (computational) concerns and o er some solutions

BLP's estimation algorithm

- Nested Fixed Point (NFP) approach
 - Nest fixed point calculation (inner loop) into parameter search (outer loop)
- Propose contraction mapping to calculate fixed point
- Our concerns
 - Trade o inner loop numerical error versus speed
 - Error in inner loop propagates into outer loop
 - Wrong parameter estimates
- Concern regards NFP algorithm, not actual statistical properties of BLP
- Our solution is MPEC
 - Mathematical program with equilibrium constraints
 - MPEC & NFP are statistically the same estimator (Berry, Linton & Pakes 2004)
 - See Su & Judd (2008) for non-demand applications

Our contributions

- Analyze numerical properties of the NFP algorithm
- Poor implementation can lead to wrong parameter estimates
- MPEC: alternative computational method
 - Impossible to have same numerical errors as NFP
 - Can execute faster than NFP
 - Applies to models where contraction mapping does not exist
 - Richer static models, Gandhi (2008)
 - Many forward-looking, dynamic demand models
 - Even models with multiple demand shocks to satisfy market shares?
- Issues with NFP more severe in dynamic demand applications
 - Multiple nested loops
 - Bellman iterations more computationally expensive
 - MPEC's advantage may be even greater in these cases

Discrete choice demand model

$$U_{i,j,t} = {\stackrel{0}{i}} + X_{j,t}^{\emptyset} {\stackrel{X}{i}} {\stackrel{p}{i}} p_{j,t} + {_{j,t}} + {''_{i,j,t}}$$

- Consumer i, choice j 2 J, market t 2 T
- Product characteristics $x_{j,t}$, $p_{j,t}$, j,t
 - j;t not in data
- $\binom{0}{i}$, $\binom{x}{i}$, $\binom{p}{i}$ random coe cients
 - Distribution F (;)
 - BLP's statistical goal: estimate in parametric distribution
- i,j,t extreme value shock (logit)
- i picks j if $u_{i,j,t}$ $u_{i,k,t}$ 8k2J;k6j

Inner loop of NFP approach

Compute numerically

$$() = s^{-1}(S;)$$

- BLP propose a contraction-mapping
 - For each guess iterate on

Contraction Mapping Theorem Some details skipped

• Assume that T is a contraction mapping:)

$$T()$$
 $T(\tilde{})$ $L()$

Lipschitz constant for BLP contraction mapping

can show it's related to Jacobian of iteration operator

$$L = \max_{\xi \geq D} kl \quad r (\log s (;))k;$$

where $\frac{\partial (\log s_{jt}(\xi;\theta))}{\partial \xi_{lt}}$ is, for j=l and $j \in l$ respectively

$$\frac{20}{1 + P_{k=1}^{J} \exp x_{jt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}}{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}} A = \frac{1 + P_{k=1}^{J} \exp x_{jt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}}{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}} A = \frac{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}}{1 + P_{k=1}^{J} \exp x_{jt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}} A = \frac{20}{1 + P_{k=1}^{J} \exp x_{jt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}} A = \frac{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}}{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}} A = \frac{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}}{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{kt} + \xi_{kt}}} A = \frac{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{jt} + \xi_{jt}}}{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{kt} + \xi_{kt}}} A = \frac{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{kt} + \xi_{kt}}}{1 + P_{k=1}^{J} \exp x_{kt}^{\theta} \beta^{r} - \alpha^{r} p_{kt} + \xi_{kt}}}$$

Loose inner loop + numerical derivatives = bad news Application of Lemma 9.1 in Nocedal & Wright (2006)

- Most scholars use smooth optimizers, which use gradient information
- Gradient often approximated by numerical derivatives

$$r_dQ((::in)) = \frac{Q((+de_k:in))Q((de_k:in))}{2d} \frac{j\theta j}{k=1}$$

Gradient error bounded

$$kr_dQ((;i_{\text{in}}))$$
 $rQ((;0))k_1$ $O(d^2 + \frac{1}{d}O(\frac{L()}{1 + L()})$ in

 Search algorithm could go in wrong direction because of numerical error!

Simulated data setup

•

Simulation draws

- Goal is not to discuss error from numerical integration
- Use same 100 draws in numerical integrals in data creation and estimation
- No numerical error from integration
- In practice, multiply all computing times by 100
 - 10,000 draws
- Not clear fewer draws favors either NFP, MPEC

Software details

- MATLAB, highly vectorized code
 - Parallelizes well
- Optimization software KNITRO

•

Nevo's cereal data: Loose versus tight tolerances for NFP With closed-form derivatives

	NFP	NFP	NFP
	Loose	Loose	Tight
	Inner	Both	
Fraction Convergence	0.0	0.81	1.00
Frac.< 1% > "Global" Min.	0.0	0.0	1.00
Mean Own Price Elasticity	-3.75	-3.69	-7.43
Std. Dev. Own Price Elasticity	0.03	0.08	~0
Lowest Objective	15.3816	15.4107	4.5615
Elasticity for Lowest Obj.	-3.77	-3.77	-7.43

- Nevo (2000) cereal data (pseudo-real) prices, quantities, characteristics across multiple markets
- 25 starting values
- NFP loose inner loop: $_{in} = 10^{-4}$, $_{out} = 10^{-6}$
- NFP loose both: $in = 10^{-4}$, out = 10^{-2}
- NFP tight: $_{in} = 10^{-14}$, $_{out} = 10^{-6}$

Multiple local minima / Knittel and Metaxoglou (2008)

- We find NFP with tight inner loop often finds global minimum
 - Multiple local minima do exist, but not insurmountable
- They used NFP and 50 starting values
- They claim BLP unreliable because di erent starting values find di erent local optima

•

Our alternative constrained optimization approach

• MPEC (general idea from Su & Judd 2007)

```
\min_{\theta,\xi} \quad g()^{\theta} Wg() subject to s(;) = \text{SWM} n4) 2000 075 d 53 30 170 1997 0.6
```

MPEC advantages vs. NFP

- No nested contraction mapping
 - No numerical error from inner loop
- Can be faster
 - Contraction mapping converges linearly vs. Newton's method (MPEC) converges quadratically
 - Market share equations hold only at final solution, not at every iteration
 - Market share equations exposed to optimizer
 - Optimizer has gradient and sparsity pattern of constraints to exploit
 - Objectives, constraints less nonlinear in parameters
 - Larger, smoother, sparser problem can be easier than smaller, rougher, denser problem
- Can be applied to models where there is no contraction mapping
 - Uniqueness (Gandhi 2008)
 - No uniqueness?

Lipschitz constants for NFP contraction mapping

Par	ameter	Std.	Dev. of	7	# of	Mean c	of Intercept
S	Scale		Shocks <i>\xi</i>		Markets T		β_i^0
Value	Lipschitz	Value	Lipschitz	Value	Lipschitz	Value	Lipschitz
0.01	0.985	0.1	0.808	25	0.860	-2	0.771
0.1	0.971	0.25	0.813	50	0.871	-1	0.871
0.50	0.887	0.5	0.832	100	0.888	0	0.936
0.75	0.865	1	0.871	200	0.888	1	0.971
1	0.871	2	0.934			2	0.988
1.5	0.911	5	0.972			3	0.996
2	0.938	20	0.984			4	0.998
3	0.970						
5	0.993						

Speeds, # convergences and finite-sample performance

Intercept	Lips.	Routine	Runs	CPU	Own-Price Elasticities	
$E \beta_i^0$	Const.		Conv.	Times	Bias	RMSE
-2	0.806	NFP tight	1	1184.1	0.026	0.254
		MPEC	1	1455.1	0.026	0.254
-1	0.895	NFP tight	1	1252.8	0.029	0.258
		MPEC	1	1528.4	0.029	0.258
0	0.950	NFP tight	1	1352.5	0.029	0.265
		MPEC	1	1564.1	0.029	0.265
1	0.978	NFP tight	1	1641.1	0.029	0.270
		MPEC	1	1562.5	0.029	0.270
2	0.991	NFP tight	1	2498.1	0.030	0.273
		MPEC	1	1480.7	0.030	0.273
3	0.997	NFP tight	1	5128.1	0.031	0.276
		MPEC	1	1653.9	0.030	0.278
4	0.999	NFP tight	1	9248.5	0.032	0.279
		MPEC	1	1881.8	0.031	0.279

Lessons learned

 For low Lipschitz constant, NFP and MPEC can be about the same speed

•

Field data: Nevo's cereal data

- NFP finds same local minimum for all 50 runs with objective function 4.5615
- MPEC finds same local minimum for 48 of 50 runs with objective function 4.5615
- Avg. CPU time: 763.14 sec (NFP) vs. 544 sec (MPEC)

Extension: Dynamic BLP with forward-looking consumers

- Consumers have expectations over future
 - Real option value of no-purchase: delay choice to future
 - Durable goods with declining prices
 - Stockpiling with temporary discounts
 - Purchasing upgrades and resale of existing products
 - Melnikov (2002), Nair (2007), Gowrisankaran and Rysman (2007), etc.
- ullet Still endogeneity / stochastic model motivations for demand shocks $_{j,t}$

Example: durable goods with falling prices

• J = 2 products, R consumer types, T time periods

$$\log(p_{j,t}) = p_{t-1}^{0} j + j,t$$

Expected Value of waiting

$$v_0^r(p_t;\theta^r) = \delta \max \begin{pmatrix} & & & & \\ & n & v_0^r & p_t^\theta p_j + \psi; \theta^r & + \epsilon_0 & \\ & \max_j & \beta_j^r & \alpha^r & p_t^\theta p_j + \psi & + \xi_j + \epsilon_j \end{pmatrix} \circ dF(\epsilon)dF; (\psi, \xi)$$

• Tastes h

$$h_{h} = \begin{cases}
8 \\
1 \\
1
\end{cases}$$
Pr(1) = 1
$$\vdots$$

$$R; Pr(R) = 1$$

$$r = 1$$

• Joint density of (i,t;i,t) N(0;)

An MPEC approach to dynamic demand

Optimization problem

$$\begin{array}{lll} \max_{f:\,f:\,f:\,vg} & \frac{\mathcal{O}}{s} \frac{1}{t=1} \frac{1}{(2)^{\frac{3J}{2}J}} \frac{1}{j^{\frac{1}{2}}} \exp & \frac{1}{2} u_t^{'} u^{-1} u_t \; j J_{t;u!} \; \gamma j \\ \text{subject to} & s(\xi_t;\theta) = S_t \; \mathcal{B} \; t = 1, \dots, T \\ & O & 1 \\ \text{and} & v_0^r \left(p_d \right) = \delta \log @ \; \underset{j}{\text{exp}} \; \frac{(p_d^r p_j + \psi)}{\rho_j^r} + \psi + \xi_j \; \text{A} \; dF_{-r} \; (\psi,\xi) \\ & \mathcal{B} \; d \; 2 \; D, \; r = 1, \dots, R. \end{array}$$

Constrained optimization combines

- Maximization of likelihood
- Dynamic programming
- Market share inversion / demand shocks

Early results from a Monte Carlo study

	Ві	as	RM	ISE
θ	MPEC	NFP	MPEC	NFP
$\beta_1:4$	7.5E-03	4.6E-02	1.7E-01	1.5E-01
β_2 : -1	6.2E-03	3.7E-02	1.5E-01	1.2E-01
α: -0.15	-1.1E-04	-2.9E-04	8.0E-04	5.4E-04
ρ				
<i>int</i> ₁ : 5	9.4E-03	1.9E-02	4.9E-02	4.6E-02
$ \rho_{1;1}:0.8 $	9.5E-05	-2.1E-04	1.2E-03	1.2E-03
$ ho_{1;2}:0.2$	-1.6E-04	-3.8E-05	1.5E-03	1.7E-03
<i>int</i> ₂ : 5	8.9E-03	6.6E-04	5.9E-02	3.2E-02
$ ho_{2;1}:0.1$	-7.0E-05	1.5E-04	1.1E-03	5.6E-04
$ \rho_{2;2}:0.55 $	-6.5E-05	-4.5E-04	1.4E-03	8.8E-04
chol()				
1	-4.1E-03	-4.5E-03	1.7E-02	1.7E-02
0.866	-1.7E-03	-5.5E-04	1.5E-02	1.4E-02
0.5	-7.9E-04	-2.4E-03	2.0E-02	1.9E-02
Avg CPU time (sec)	4579	16,971	4579→	16,971

Conclusions

- BLP very important innovation in demand estimation
- Concerns with NFP algorithm
 - Can be slow
 - Numerical derivatives + loose inner loop can lead to incorrect parameter estimates
- MPEC applied to BLP
 - Can be faster
 - Especially when NFP's Lipschitz constant close to 1
 - Fewer numerical errors
 - No inner loop to propagate errors
 - Can apply to models where there is no contraction mapping
- Degree of advantage of MPEC over NFP may increase with dynamic BLP
 - NFP nests multiple inner loops
 - Typically linearly convergent contraction mappings
 - Amplifies benefits of quadratic convergence in MPEC

