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1 Introduction

We study the diffusion of competing durable goods in a market exhibiting indirect network
effects due to the classic hardware/software structure (Katz and Shapiro 1985). Of particular
interest is whether such markets are prone to tipping : “the tendency of one system to pull away
from its rivals in popularity once it has gained an initial edge” (Katz and Shapiro 1994) and,



our work, Jenkins, Liu, Matzkin, and McFadden (2004) allow for forward-looking hardware
manufacturers. But, both papers treat consumers as myopic. In contrast, our paper allows
for forward-looking consumer behavior and solves for an equilibrium in which consumers’ and



concentration that would arise if the sources of indirect network effects were reduced or
eliminated. The key insight is that tipping generally needs to be measured relative to a well-
defined, counter-factual market outcome. For an empirical implementation of this measure,
we need a model that captures indirect network effects, can be calibrated from actual data,
and allows us to make predictions about the equilibrium adoption of the competing standards
under various different parameter values capturing the strength of indirect network effects.

To implement the proposed measure of tipping, we build a dynamic model that captures
indirect network effects and gives consumer expectations a central role. Our model involves
three types of players: consumers, hardware manufacturers, and software developers. The
demand side of our model extends the framework of Nair et al. (2004) and allows for dynamic
adoption decisions. Consumers are assumed to “single-home,” meaning they adopt at most
one of the competing hardware standards.



similar approach has recently been employed by Ryan and Tucker (2007).7

The calibrated model reveals that the 32/64 bit video game console market can exhibit
economically significant tipping effects, given our model assumptions and the estimated pa-
rameter values. The market concentration, as measured by the 1-firm concentration ratio in
the installed based after 25 periods, increases by at least 23 percentage points due to indirect
network effects. We confirm the importance of consumer expectations as an important source
of indirect network effects; in particular, we find that tipping occurs at a (monthly) discount
factor of 0.9, but not for smaller discount factors. Our model also predicts penetration pricing
(for small levels of the installed base) if indirect network effects are sufficiently strong. In
markets with strong network effects, firms literally price below cost during the initial periods
of the diffusion to invest in network growth.

2 Model

We consider a market with competing hardware platforms. A consumer who has adopted
one of the available technologies derives utility from the available software for that platform.
Software titles are incompatible across platforms. Consumers are assumed to choose at most
one of the competing hardware platforms and to purchase software compatible with the chosen
hardware, a behavior Rochet and Tirole (2003) term “single-homing.” There are indirect
network effects in this market, which are due to the dependence of the number of available
software titles for a given platform on that platform’s installed based. The consumers in this
market have expectations about the evolution of hardware prices and the future availability of
software when making their adoption decisions. Correspondingly, the hardware manufacturers
anticipate the consumer’s adoption decisions, and set prices for their platforms accordingly.
The software market is monopolistically competitive, and the supply of software titles for any
given platform is increasing in the platform’s installed base.

Time is discrete, t = 0; 1; : : : The market is populated by a mass M = 1 of consumers.
There are J = 2 competing firms, each offering one distinct hardware platform. yjt ∈ [0; 1]
denotes the installed base of platform j in period t; i.e., the fraction of consumers who have
adopted j in any period previous to t: yt = (y1t; y2t) describes the state of the market.

In each period, platform-specific demand shocks �jt are realized. �jt is private information
to firm j, i.e., firm j learns the value of �jt before setting its price, but learns the demand shock
of its competitor only once sales are realized. As we shall see later, �jt can strongly influence
the final distribution of shares in the installed base. In particular, the realizations of �jt in the

7An interesting difference is that Ryan and Tucker (2007) use individual level adoption data, which enables
them to accommodate a richer treatment of ‘observed’ consumer heterogeneity. The trade-off from incorpo-
rating more heterogeneity is that they are unable to solve the corresponding dynamic hardware pricing game
on the supply side.
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end of a period, we can denote this utility as uj(yj;t+1) = 
njt = 
hj(yj;t+1): The present
discounted software value is then defined as

!j(yt+1) = E

" ∞X
k=0

�kuj(yj;t+1+k)|yt+1

#
:

This value follows the recursion

!j(yt+1) = uj(yj;t+1) + �

Z
!j(fe(yt+1; �))�(�)d�:

Consumers who have not yet adopted either buy one of the hardware platforms or delay
adoption. The choice-specific value of adopting hardware platform j is given by

vj(yt





2. The firm’s value functions V1; : : : ; VJ satisfy the Bellman equations (5).

3. pj = �j(y; �j) maximizes the right-hand side of the Bellman equation (5) for each
j = 1; : : : ; J:

4. The consumer’s expectations are rational: �ej ≡ �j for j = 1; : : : ; J; and fe(y; �) =
f(y; �; �(y; �)); where f is as defined by equation (4).

In the Markov perfect equilibrium, all players—firms and consumers—act rationally given
their expectations about the strategies of the other market participants. Furthermore, expec-
tations and actually realized actions are consistent.

3 Estimation

To make our computational results more realistic, we calibrate them with data from the
video game console market. While demand estimation per se is not the main objective of
the paper, it is nevertheless helpful to discuss briefly some of the challenges involved in
estimating preference parameters for a dynamic discrete choice model. The main difficulty
arises from the incorporation of consumer beliefs, a crucial element for durable goods demand
in general (Horsky 1990, Melnikov 2000, Song and Chintagunta 2003, Nair 2005, Prince
2005, Carranza 2006, Gowrisankaran and Rysman 2006, and Gordon 2006). Once we include
consumer beliefs in our console demand function, the derivation of the market shares, equation
(3), requires us to compute the choice-specific value functions. Nesting the corresponding
dynamic programming problem into the estimation problem is prohibitive due to the high



Stage 1

In the first stage, we estimate the consumer choice strategies along with the firms’ pricing
strategies and the software supply function. The supply function of software variety is specified
as follows

log(njt) = Hj(yj;t+1; �n) + �jt: (6)

where �jt ∼ N
�
0; �2

�

�
captures random measurement. This specification is consistent with

the equilibrium software supply function derived in the Appendix, equation (9). The pricing
strategies are specified as follows

log (pjt) = Pj (yt; z
p
t ; �p) + ��jt; (7)

where �jt ∼ N (0; 1). In equation (7) we let Pj be a flexible functional form of the state
variables. For the empirical model, we include exogenous state variables, zpt , that are observed
by console firms in addition to yt and �t; the state variables in the model of Section 2. These
additional states are discussed in Section 4. In equation (7), we assume that the video game
console manufacturers use only payoff-relevant information to set their prices. But we do
not assume that their pricing strategies are necessarily optimal. This specification has the
advantage that it is consistent with the Bayesian Markov perfect equilibrium concept used in
our model, but does not explicitly impose it.

Conditional on the model parameters, there is a deterministic relationship between the
price and installed base data and the demand unobservable, �jt = Xj(yjt; pjt; zpt )12. Then,
conditional on yt and pt; we can estimate the consumers’ optimal choice strategy in log-odds:

�jt ≡ log (sjt)− log (s0t)

= vj

�
yt; �t; pt; z

d
t

�
− v0

�
yt; �t; z

d
t

�
+ �jt

= Lj
�
yt;X (yt; pt; z

p
t ); zdt ; ��

�
+ �jt; (8)

where �jt ∼ N(0; �2
� ) is random measurement error and zdt denotes exogenous state variables

observed by the consumer. By including the control function X (yt; pt; z
p
t ) in the demand

equation, we also resolve any potential endogeneity bias that would arise due to the correlation
between prices and demand shocks (this is the control function approach used in . The first
stage consists then of estimating the vector of parameters � = (�n; �p; ��; �) via maximum
likelihood using the equations (6), (7), and (8).

12We can trivially invert � out of the price equation because of the additivity assumption in (7). This is
a stronger condition than in BBL, but it is analogous to other previous work such as Villas-Boas and Winer
(1999) and Petrin and Train (2005).
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Stage 2

In the second stage, we estimate the consumers’ structural taste parameters, �, by construct-
ing a minimum distance procedure that matches the simulated optimal choice rule for the
consumers to the observed choices in the data. The idea is to use the estimated consumer
choice strategies, (8) and the laws of motion for prices and software variety, (7) and (6),
to forward-simulate the consumers’ choice-specific value functions, Vj

�
yt; �t; pt; �; �̂

�
and

V0(y; �; �; �̂). The details for the forward-simulation are provided in the Appendix. Note
that while our two-step approach does not require us to assume that firms play the Markov
Perfect equilibrium strategies explicitly, we do need to assume that consumers maximize the
net present value of their utilities.

The minimum distance procedure forces the following moment condition to hold approxi-
mately:

Qjt(�0; �̂) ≡ �jt −
�
Vj(y; �; p; �0; �̂)− V0(y; �; �0; �̂)

�
= 0:

That is, at the true parameter values, �0; and given a consistent estimate of �; the simulated
log-odds ratios should be approximately equal to the observed log-odds ratios for each of the
observed states in the data. The minimum distance estimator, �MD, is obtained by solving
the following minimization problem:

�MD = min
Λ

n
Q(�; �̂)′WQ(�; �̂)

o
;

where W is a positive semi-definite weight matrix.13 Wooldridge (2002) shows that the
minimum distance estimator has an asymptotically normal distribution with the covariance
matrix

Avar(�MD) =
�
∇ΛQ

′W∇ΛQ
�−1∇ΛQ

′W∇ΘQ
̂∇ΘQ
′W∇ΛQ

�
∇ΛQ

′



4 Data

For our calibration, we use data from the 32/64-bit generation of video game consoles, one of
the canonical examples of indirect network effects. To understand the relevance of this case
study to our model and our more general point about tipping in two-sided markets, we briefly
outline some of the institutional details of the industry. We then discuss the data.

The US Videogame Console Industry

The market for home video game systems has exhibited a two-sided structure since the launch
of Atari’s popular 2600 VCS console in 1977 (Williams 2002). Much like the systems today,
the VCS consisted of a console capable of playing multiple games, each on interchangeable
cartridges. While Atari initially developed its own proprietary games, ultimately more than
100 independent developers produced games for Atari and more than 1,000 games were re-
leased for Atari 2600 VCS (Coughlan 2001A). This same two-sided market structure has
characterized all subsequent console generations, including the 32/64-bit generation we study
herein.

The 32/64-bit generation was novel in several ways. None of the consoles were backward-
compatible, eliminating concerns about a previously-existing installed base of consumers
which might have given a firm an advantage. This was also the first generation to adopt
CD-ROM technology; although early entrants, Philips and 3DO, failed due to their high con-
sole prices of $1000 and $700 respectively. In contrast, the September 1995 US launch of
Sony’s 32-bit CD-ROM console, Playstation, was an instant success. So much so, that its
competitors, Sega’s 32-bit Saturn console and later, Nintendo’s 64-bit N64 cartridge console,



Saturn by three-to-one. By 1998, more than 400 Playstation titles were available in the US.
In addition, Sony engaged in aggressive penetration pricing of the console early on, hoping to
make its money back on game royalties (Cobb 2003).





series creates several generic identification concerns for durable goods demand estimation
in general17. The first and most critical concern is the potential for sales diffusion data
to exhibit dependence over time as well as inter-dependence in the outcome variables. In
addition, the diffusion implies that any given state is observed at most once, a property that
could complicate the estimation of beliefs. Finally, we also face the usual potential for price
endogeneity to bias demand parameters if prices are correlated with the demand shocks, �
(Berry 1994). We now briefly discuss the intuition of our empirical identification strategy.

Diffusion data may naturally exhibit dependence over time in prices, p



between prices and � could introduce endogeneity bias. Our joint-likelihood approach to the
first stage does provide a parametric solution to the endogeneity problem through functional
form assumptions. We have imposed a structure on the joint-distribution of the data which
provides us with the relationship between prices and demand shocks, �. However, we can
relax this strong parametric condition by using our console cost-shifters. Both the exchange
rate and the PPI’s provide sources of exogenous variation in prices that are excluded from
demand and that are unlikely to be correlated with consumer tastes for video game consoles,
i.e. �. In essence, the endogeneity is resolved by including the control function, X(yjt; pjt; z

p
t ),

in the log-odds of choices, equation (8) (e.g. Villas-Boas and Winer 1999 and Petrin and Train



The mean R2 of a regression of log-odds on the observed states and the simulated � is 0.95.
Overall, the first-stage model appears to fit the data well.

A critical aspect of the 2-step method is that the first-stage model captures the relationship
between the outcome variables and the state variables. To assess the fit of the first-stage
estimates, in Tables 3, 4, and 5, we report all the first-stage estimates and their standard
errors. Most of the estimates are found to be significant at the 95% level. In Table 5, we
find a positive relationship between software variety and the installed base of each standard.
Analogous findings are reported in Clements and O’Hashi (2005).

In the Figures 1, 2, and 3, we plot the true prices, log-odds and games under each standard.
In each case, we plot the outcome variable for a standard against its own installed base
(reported as a fraction of the total potential market, M = 97; 000; 000). In addition, we
report a 95% prediction interval for each outcome variables based on a parametric bootstrap
from the asymptotic distribution of our parameter estimates19. In several instances, the
observed outcome variable lies slightly outside the prediction interval. But, overall, our first-
stage estimates appear to do a reasonably good job preserving the relationship between the
outcome variables and the installed base.

5.2 Second Stage

We report the structural parameters from the second-stage in Table 6. Results are reported
for two specifications: models 3 and 7 from the previous section. Recall that model 3 does
not have any exclusion restrictions across equations in the first stage. Model 7, the best-
fitting model overall in stage 1, includes PPI’s and exchange rates in the price equations. To
estimate the second stage of the model, we maintain the assumption that consumers do not
observe realizations of these costs. Instead, we assume they observe prices each period and
can integrate the innovations to prices out of their expected value functions20. The results
are based on an assumed consumer discount factor of � = 0:9 and 60 simulated histories21



industry observers who noted that the improvements from 32 to 64 bit technology were much



We now provide a formal definition of our tipping measure. Let �jt be the share of standard
j in the installed base t periods after product launch:

�jt ≡
yj;t+1

y1;t+1 + y2;t+1
:

Here, remember that yj;t+1 is the installed base of standard j at the end of period t and
thus includes the sales of j during period t: The cumulative 1-firm concentration ratio after
T periods is then given by

C(yT ) = max{�1T ; �2T }:

The realization of C(yT ) depends on the model parameters, �; an equilibrium that exists
for these parameters, E(�); and a sequence of demand shocks, �t: Given � and E(�); the
distribution of (yt)Tt=0 is well defined, and we can thus calculate the expected cumulative
1-firm concentration ratio

C1(�; E(�)) ≡ E (C(yT )|�; E(�)) :

Let �′ be a variation of the model where one or more parameters that govern the strength of
indirect network effects are changed compared to the model described by �; and let E(�′) be a
corresponding equilibrium. We can thus measure tipping, the increase in market concentration
due to indirect network effects, as

�C1 = C1(�; E(�))− C1(�′; E(�′)):

If we knew that the market under investigation was symmetric, then C1 t 0:5 in the absence
of indirect network effects, and we could measure tipping by �C1 = C1(�; E(�))− 0:5:

To implement the tipping measure, we calibrate the model developed in Section 2 and use
it to predict the evolution of the market. The parameters consist of the demand estimates and
software supply function estimates presented in section 5, along with industry estimates of
hardware console production costs and royalty fees.23 For a given set of parameter values, we
solve for a Markov perfect Bayesian equilibrium of the model, and then simulate the resulting
equilibrium price and adoption paths.

situation, the difference between the cumulative 1-firm concentration ratio and 50% would not provide a
meaningful measure of tipping even in the symmetric case.

23Cost and royalty data are reported in Liu (2007) and based on various industry reports. The marginal
production costs are $147 (Sony) and $122 (Nintendo), and correspond to Liu’s cost estimates 20 months after
the launch of Nintendo 64. The royalty fees per game sold are $9 (Sony) and $18 (Nintendo).



Preliminaries

We first summarize specific aspects of the model solutions and simulations. Firms and con-
sumers make decisions at the monthly level. Throughout, we assume that firms discount
future profits using the factor � = 0:9924. However, we will consider various consumer dis-
count factors across the different simulations. To simplify the analysis, we also normalize the
market size to M = 125.

We summarize the firms’ equilibrium pricing strategies by the expected pricing policies
E(pjt|yt) = E�j (�j(yt; �j)|yt). Here, the expectation is taken over the firm’s private informa-
tion, the transitory demand component �j : The equilibrium evolution of the state vector is
summarized by a vector field, where each state is associated with the expected state in the
next period.26 Thus, for a given current state yt; we calculate (and plot) a vector describing
the expected movement of the state between periods:

−→
�t = E(yt+1|yt)− yt 4.636 Td1t4.636 Td.515 0 Td [(E)]TJ/F15 10.9091 Tf 7.f9 0 Td [(y)]TJ/F35 7.9791 Tf 6.58Td.515 0 Td [(E)]TJ/F15 10.93 Tf 11.318 1.636 Td [(j)]TJ/F65 10.9091 Tf 3.031 0 Td [(y)]TJ/F35 7.9701 Tf 5.349 -1.637 Td [(t)-461.637 6 2.993 Td [ [(y)]TJ/F35 72.90979091 Tf 11.515 0 Td [(E)]TJ/F15 10.9091 Tf 7.273 0 Td [(()]TJ/F65 90.9091 Tf 3.031 0 Td [(y)]TJ/F35 7.9701 Tf 5.349 -1.637 Td [(t)actorj)|y t)− yj



T = 25; yT1 ≥ yT2: The marginal production costs are indicated by horizontal lines. Figure 5
shows the vector field describing the expected evolution of the state, and the distribution of
shares in the installed base, �jt; T = 25 months after both standards were launched.27

For the scale factors 0.25, 0.5, and 0.75, the results are similar. Prices rise over time,
as firms compete more aggressively when they have not yet obtained a substantial share of
the market. After 25 months, both firms have an approximately equal share of all adopters.
Hence, market outcomes are approximately symmetric.

Now compare these results to the model solution obtained for the estimated software
utility coefficient (scale factor equals 1), indicating a larger indirect network effect than in
the previous three model variations. Now, the equilibrium changes not only quantitatively
but also qualitatively. First, unlike in the previous cases, we are no longer able to find a
symmetric equilibrium in pure strategies. However, there are at least two asymmetric pure
strategy equilibria. The graphs at the bottom of Figure 5 display one of these equilibria, which
“favors” Standard 1. In this equilibrium, before any consoles have been sold (y0 = (0; 0)),
consumers expect that Standard 1 will obtain a larger market share than Standard 2 (note
the direction of the arrow at the origin). These expectations are self-fulfilling, and due to the
impact of the expected future value of software on adoption decisions, Standard 1 will, on
average, achieve a larger share of the installed base than Standard 2. If, on the other hand,
Standard 2 ever obtains a share of the installed base that is sufficiently larger than the share
of Standard 1 (due to a sequence of favorable demand shocks, for example), then consumers’
expectations flip and Standard 2 is expected to win. The advantage due to self-fulfilling
expectations is increasing in the difference of shares in the installed base, yjt − y−j;t:

As a consequence of this equilibrium behavior, the market becomes concentrated, even
though the standards are identical ex ante. The expected cumulative one-firm concentration
ratio increases from C1 = 0:502 for the scale factor 0.25 to C1 = 0:833 for the scale factor 1



discount factor,



significantly more concentrated, C1 = 0:827:





generations of game consoles become increasingly targeted (e.g. Nintendo Wii appeals to
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Appendix A: Equilibrium Provision of Software

In this appendix, we illustrate how we can derive the hardware demand model based on tastes
for variety of software. We use a CES model of preferences for software and assume a spot
market of monopolistically competitive software suppliers.

After purchasing a hardware platform j, a consumer i purchases an assortment of com-
patible software each period, xit =

�
xi1t; :::; xin





base as follows:
log (Qjt) = �+ � log (yjt+1) .
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Appendix B: Forward-Simulation of the Consumers’ Choice-Specific
Value Functions

We outline the procedure for using the first-stage estimates of the consumers’s choice strategy,
(8), the console firms’ pricing strategies, (7), and the software supply, (6), to forward-simulate
the consumers’ choice-specific value functions.

Conditional on the first-stage estimates and some initial state, y0, we can simulate histories
of all variables affecting the consumers’ payoffs. For any period t with beginning-of-period
installed base yt, we draw recursively as follows:

�jt ∼ N(0; 1); (j = 1; : : : ; J)

pjt|yt; �t = exp(Pj(yt; �̂p) + �̂�jt);

�jt|yt; �t = Lj(yt; �t; �̂�);

sjt|�t =
exp(�jt)

1 +
PJ

k=1 exp(�kt)
;

yj;t+1|yt



Value of waiting First, we define the expected per-period utility of a consumer who has
not adopted at the beginning of period t; conditional on yt; pt; and �t :

U(yt; �t) = s0tE(�0t|0) +
JX
j=1

sjt(�j + 
njt − �pjt + �jt + E(�jt|j)):

In this equation, st; pt; and nt are the choice probabilities, prices, and number of software
titles as implied by the first-stage estimates, conditional on the current states yt and �t:

Furthermore, E(�jt|j) = − log(sjt) is the expected value of the Type I Extreme Value random
utility component, given that choice j is optimal.

Next, we definem0t as the probability that a consumer has not adopted one of the hardware
standards prior to period t: Note that m01 = 1; because we want to calculate the value of
waiting in period t = 0: Thereafter (t > 1), m0t evolves according to

m0



Table 1: Descriptive Statistics

Console Mean SD Min Max
Sales Playstation 275,409 288,675 26,938 1,608,967

Nintendo 192,488 201,669 1,795 1,005,166
Price Playstation 119.9 30.3 55.7 200.6

Nintendo 117.6 33.9 50.3 199.9
Game Titles Playstation 594.2 381.1 3 1,095

Nintendo 151.2 109.9 1 281

Table 2: Model Fit for Different Specifications

Model Log-Likelihood BIC
1) Linear, �, 1-comp -187.88 679.40
2) Linear, time (t < 60), 1-comp -150.11 620.97
3) Quadratic, time (t < 60), 1-comp -79.38 514.01
4) Quadratic, time (t < 60), 2-comp -79.38 522.28
5) Quadratic, time (t < 60), 1-comp,

PPIs in prices -63.54 507.69
6) Quadratic, time (t < 60), 1-comp,

exchange rate in prices -25.43 422.94
7) Quadratic, time (t < 60), 1-comp,

exchange rate and PPI’s in prices -7.53 412.79
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Table 3: First Stage Estimates: Pricing Policies Pj



Table 4: First Stage Estimates: Log-odds of Market Shares, Lj

Sony Nintendo
Estimate SE Estimate SE

Intercept -13.826 2.539 -1.141 0.744
ySony 1.456 4.669 0.065 0.012
yN64 -7.670 5.884 -1.740 0.196
y2
Sony -0.334 0.432 -1.304 0.305
y2
N64 -0.684 0.571 -1.820 0.335
Time (< 64) -0.003 0.008 -2.176 0.469
Jan -1.367 0.154 -1.950 0.528
Feb -1.345 0.159 -1.625 0.495
Mar -1.813 0.475 -1.682 0.525
Apr -2.442 0.351 -1.674 0.397
May -2.596 0.463 -1.268 0.402
Jun -1.947 0.395 -1.713 0.215
Jul -1.805 0.470 -0.789 0.335
Aug -1.871 0.392 -0.288 0.070
Sep -1.496 0.426 0.085 0.135
Oct -1.644 0.199 -0.406 0.150
Nov -0.781 0.120 0.084 0.173
�Sony -27.656 5.216 0.103 0.061
�N64 0.844 4.936 -0.220 0.083
�2
Sony -13.383 7.554 0.547 0.107
�2
N64 -0.660 0.416 -0.545 0.119

Table 5: First Stage Estimates: Equilibrium Game Provision, Hj

Estimate SE
�Sony -16.220 2.042
�Nintendo -24.349 1.992
�Sony 1.369 0.126
�Nintendo 1.810 0.126
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Table 6: Second Stage Parameter Estimates
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Figure 2: In-Sample Fit: Log-Odds Ratios

Figure 3: In-Sample Fit: Provision of Games
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Figure 4: Symmetric competition: Equilibrium pricing policies and price paths. Consumer’s
software utility coefficient is scaled by different factors. The expected price paths are shown
conditional on yT1 ≥ yT2 at the end of period T = 25:Marginal production costs are indicated
by horizontal lines.
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Figure 5: Symmetric competition: Expected state evolution and distribution of shares in the
installed base after 25 months. Consumer’s software coefficient is scaled by different factors.
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Figure 6: Symmetric competition: Equilibrium pricing policies and price paths for different
consumer discount factors (�).
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Figure 7: Predictions from estimated parameter values: Expected state evolution and dis-
tribution of shares in the installed base after 25 months. Consumer’s software coefficient is
scaled by different factors.
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Figure 8: Predictions from estimated parameter values: Equilibrium pricing policies and price
paths for different consumer discount factors (�).
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