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Abstract

The widely-used estimator of Berry, Levinsohn and Pakes (1995) produces consistent instrumental

variables estimates of consumer preferences from a discrete-choice demand model with random co-

efficients, market-level demand shocks and potentially endogenous regressors (prices). The nested

fixed-point algorithm typically used for estimation is computationally intensive, largely because a

system of market share equations must be repeatedly numerically inverted. We provide numerical

theory results that characterize the properties of typical nested fixed-point implementations. We

use these results to discuss several problems with typical computational implementations and, in

particular, cases which can lead to incorrect parameter estimates. As a solution, we introduce a

new computational formulation of the estimator that recasts estimation as a mathematical pro-

gram with equilibrium constraints (MPEC). In many instances, MPEC is faster than the nested

fixed point approach. It also avoids the numerical issues associated with nested inner loops. Sev-

eral Monte Carlo experiments support our numerical concerns about NFP and the advantages

of MPEC. We also discuss estimating static BLP using maximum likelihood instead of GMM.

Finally, we show that MPEC is particularly attractive for forward-looking demand models where

both Bellman’s equation and the market share equations must be repeatedly solved.
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1 Introduction

The discrete choice class of demand models has become popular in the demand estimation literature

due to the models’ ability to accommodate rich substitution patterns between a potentially large array

of products. The simulated method of moments estimator developed in Berry, Levinsohn and Pakes

(1995), hereafter BLP, made an important contribution to this literature by accommodating controls

for the endogeneity of product characteristics (namely prices) without sacrificing the flexibility of

these substitution patterns. BLP consider a random coefficients discrete choice model with market-

level demand shocks that correlate with prices. They construct moment conditions with which they

can address the price endogeneity using standard instrumental variables methods. The approach has

had a large impact: as of October 2008, BLP generated of 1000 citations in Google Scholar and the

approach has been used in many important empirical studies. However, the estimator is difficult to

program and can take a long time to run on a desktop computer. More importantly, some current

implementations of the estimator are sufficiently vulnerable to numerical inaccuracy that they may

produce incorrect parameter estimates. We summarize some of these computational problems and

propose an alternative procedure that is robust to these sources of numerical inaccuracy.

An important component of BLP’s contribution consists of a computationally feasible approach

to constructing the moment conditions. As in Berry (1994), the main idea is to invert the non-linear

system of market share equations. BLP and Berry suggest nesting this inversion step directly into the

parameter search. For complex specifications such as random coefficients, this inversion step may not

have an analytic inverse and numerical inversion can be prohibitively slow. BLP propose a contraction-

mapping routine to solve this system of equations. This step nests an inner loop contraction mapping

into the parameter search. Following the publication of Nevo’s (2000b) “A Practitioner’s Guide” to

implementing BLP, numerous studies have emerged using the BLP approach to estimating discrete

choice demand systems with random coefficients.

Our first objective consists of exploring the numerical properties of BLP’s contraction mapping

approach. The GMM objective function can be called hundreds of times during a numerical optimiza-

tion over structural parameters; each call to the objective function requires a call to the inner loop.

Therefore, it may be tempting to use a less stringent stopping criterion for the inner loop in order

to speed up estimation. We show theoretically that any numerical error in the contraction mapping

is magnified when considering the numerical error to the overall GMM objective function. Running

the inner contraction mapping using a loose stopping criteria propagates numerical error into the

GMM objective function, which can cause a smooth optimization routine to stop early and produce

parameter estimates that are not a true local minimum. Also, numerical error may prevent the opti-

mization routine from being able to diagnose convergence. The main concern is that researchers may
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try to increase the speed of the inner loop by using a looser convergence tolerance. This may lead,

unfortunately, to incorrect parameter estimates.

Our second objective consists of proposing a new computational method for implementing the BLP

estimator that eliminates the inner loop entirely and, thus, eliminates the potential for numerical inac-

curacy discussed above. Following Su and Judd (2007), we recast the BLP problem as a Mathematical

Program with Equilibrium Constraints (MPEC). The MPEC method minimizes the GMM objective

function subject to a system of nonlinear constraints requiring that the predicted shares from the

model equal the observed shares in the data. The minimization of an objective function subject to



not nest a contraction mapping. One concern with MPEC may be the large number of parameters in

the optimization problem. We increase the number of markets and show that the comparison of the

performance of MPEC and NFP does not change as the number of parameters in the optimization

problem increases.



computations than Gowrisankaran and Rysman (2007). The more complicated the model of consumer

demand, the greater the advantage of MPEC over traditional inner loop approaches.

Another stream of literature, concerned by the statistical efficiency of GMM estimators, has ex-

plored likelihood-based approaches that use additional structure on the joint-distribution of demand

and supply (Villas-Boas and Winer 1999; Villas-Boas and Zhao 2005). Jiang et al (2008) propose an

alternative Bayesian approach using Markov Chain Monte Carlo methods. In general, likelihood-based

approaches still require the numerical inversion of the system of market shares,1 subjecting them to



likelihood estimation, where the need to compute the Jacobian makes MPEC especially useful. Second,

we discuss the burgeoning literature on dynamic consumer demand.

2 The Demand Model

In this section, we present the standard random coefficients discrete choice demand model. In most

empirical applications, the researcher has access to market shares for each of the available products,

but does not have consumer-level information.2 The usual modeling solution is to build a system of

market shares that is consistent with an underlying population of consumers independently making

discrete choices among the various products. The population is in most instances assumed to consist

of a continuum of consumers with known mass.

Formally, each market t = 1; :::; T has a mass Mt of consumers who each choose one of the

j = 1; :::; J products available, or opt not to purchase. Each product j is described by its charac-

teristics (xj;t; �j;t; pj;t) : The vector xj;t consists of K product attributes. The scalar �j;t is a vertical

characteristic that is observed by the consumers and firms, but is unobserved by the researcher. �j;t

can be seen as a market and product specific demand shock that is common across all consumers in

the market. For each market, we define the J-vector �t = (�1;t; :::; �J;t)
0
. Finally, we denote the price

of product j by pj;t.

Consumer i in market t



sj (xt; pt; �t; �) =
Z
�

exp
�
�0 + x0j;t�

x � �ppj;t + �j;t
�

1 +
PJ
k=1 exp

�
�0 + x0k;t�

x � �ppk;t + �k;t

�dF� (�; �) : (2)

This is the random coefficient logit model.

In BLP, the goal is to estimate the parameters � characterizing the distribution of consumer

random coefficients, F� (�; �). McFadden and Train (2000) prove that a flexible choice of the family

F� (�; �) (combined with a polynomial in xj;t and pj;t) allows the random coefficient logit model to

approximate arbitrarily any vector of choice probabilities (market shares) originating from a random

utility model with an observable linear index (meaning no �j;t term). Bajari, Fox, Kim and Ryan (2008)

prove the nonparametric identification (no finite-dimensional parameter �) of F� (�) in the random

coefficient logit model without aggregate demand shocks, using data on market shares and product

characteristics. Berry and Haile (2008) prove the nonparametric identification of the entire BLP

demand model, including allowing for aggregate shocks. Fox and Gandhi (2008) have an alternative

identification proof for heterogeneity that can be adapted for market level demand shocks in the same

way as Berry and Haile. However, in most applications, more structure is imposed on the family

of distributions characterizing F� (�; �) through the choice of the family F� (�; �), with each family

member indexed by the estimable finite vector of parameters �. For example, BLP assume that

F� (�; �) is the product of K independent normals, with � = (�; �), the vectors of means and standard

deviations for each component of the K normals.

Typically, the integrals in (2) are evaluated by Monte Carlo simulation. The idea is to generate

ns draws of) F� (�; �)



shares across markets, as the model does not give full support to the data. In the next section, we

discuss estimation challenges that arise when �j;t is included in the model.

3 The BLP GMM Estimator

We now briefly discuss the GMM estimator typically used to estimate the vector of structural param-

eters, �: Like the textbook supply and demand model, the demand shocks, �j;t; force the researcher

to deal with the potential simultaneous determination of price and quantity. To the extent that firms

observe �j;t and condition on it when they set their prices, the resulting correlation between pj;t and

�





until the successive iterates �h+1
t and �ht are sufficiently close.4 Formally, we choose a small number,

for example 10�8 or 10�10, for �in as the inner loop tolerance level and require �h+1
t and �ht to satisfy

the stopping rule 

�ht � �h+1
t



 � �in (6)

for the iteration h+1 where we terminate the contracting mapping (5).5 Let �t (�; "in) denote the first

�h+1
t such that the stopping rule (6) is satisfied. The researcher then uses �t (�; "in) to approximate

�t (�) :

Researchers often find it tempting to loosen the inner loop tolerance if the NFP contraction map-

ping is slow. Below, we derive formally the theoretical rate of convergence of the inner loop call to

the contraction mapping in terms of the economic parameters of the BLP demand model. Numerical

theory proves that the convergence of a contraction mapping is linear at best. Linearly convergent

algorithms are typically considered to be slow compared to alternative methods, such as Newton’s



bound for the norm of the error is multiplied by a factor equal to L. A proof of this theorem can be

found in many textbooks, such as Dahlquist and Björck (2008). The following theorem shows how a

Lipschitz constant for a mapping T (x) can be expressed in terms of rT (x), the Jacobian of T . We

then use the Lipschitz constant result to assess an upper bound for the performance of the BLP NFP

estimator.

Theorem 2. Let the function T (�) : Rn ! Rn be differentiable in a convex set D � Rn. Then

L = max
�2D
krT (�)k is a Lipschitz constant for T .

The contraction mapping in the BLP estimator is

T (�) = � + logS � log s (�; �) :

We define a Lipschitz constant for the BLP contraction mapping T given structural parameters � as

L(�) = max
�2D
krT (�)k = max

�2D
kI �r (log sj (xt; pt; �t; �))k ;

where

@ log
�
sj (xt; pt; �t; �)

�
@�lt

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

nsX
r=1

264
0B@ exp

�
�0;r + x0j;t�

x;r � �p;rpj;t + �j;t

�
1 +

PJ
k=1 exp

�
�0;r + x0

k;t
�x;r � �p;rpk;t + �k;t

�
1CA �

0B@ exp
�
�0;r + x0j;t�

x;r � �p;rpj;t + �j;t

�
1 +

PJ
k=1 exp

�
�0;r + x0

k;t
�x;r � �p;rpk;t + �k;t

�
1CA

2375
Pns
r=1

exp
�
�0;r+x0

j;t
�x;r��p;rpj;t+�j;t

�
1+
PJ
k=1 exp

�
�0;r+x0

k;t
�x;r��p;rpk;t+�k;t

� :
; if j = l

�
nsX
r=1

264
0B@ exp

�
�0;r + x0j;t�

x;r � �p;rpj;t + �j;t

�
1 +

PJ
k=1 exp

�
�0;r + x0

k;t
�x;r � �p;rpk;t + �k;t

�
1CA
0B@ exp

�
�0;r + x0l;t�

x;r � �p;rpl;t + �l;t

�
1 +

PJ
k=1 exp

�
�0;r + x0

k;t
�x;r � �p;rpk;t + �k;t

�
1CA
375

Pns
r=1

exp
�
�0;r+x0

j;t
�x;r��p;rpj;t+�j;t

�
1+
PJ
k=1 exp

�
�0;r+x0

k;t
�x;r��p;rpk;t+�k;t

�
; if j 6= l:

:

For a given vector of structural parameters �, L(�) is the Lipschitz constant for the NFP inner loop.

It is difficult to get precise intuition for this expression as it is the norm of a matrix. But, roughly

speaking, the Lipschitz constant is related to the matrix of own and cross demand elasticities for

the demand shocks, �, as the jth element along the main diagonal is @sj;t
@�j;t

1
sj;t

. These expressions

are, in turn, related to the degree of asymmetry in the market shares. In section 7.3 below, we use

the Lipschitz constant to distinguish between simulated datasets where we expect the contraction

mapping to perform relatively slow or fast.

4.2 Determining the Stopping Criteria for the Outer Loop in NFP

This subsection provides guidance on how to select the outer loop tolerance to ensure the outer loop

will converge for a given inner loop tolerance. In particular, we show how numerical error from the
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inner loop can propagate into the outer loop. We characterize the corresponding numerical inaccuracy

in the criterion function, Q (�) ; and its gradient. This analysis then informs the decision of what

tolerance to use for the outer-optimization loop to ensure that the optimization routine is able to

report convergence. This subsection focuses on ensuring the outer loop can actually converge given

the numerical inaccuracy of the inner loop. In a later section, we show how this numerical inaccuracy

in Q(�) and its gradient can generate numerical inaccuracy in the parameter estimates of �. In some

instances, this inaccuracy could imply that the reported estimates are not a true local minimum of

Q(�).

Recall that the outer loop of the BLP estimator consists of minimizing the GMM objective function

(4). The convergence of this outer loop depends on the choice of an outer loop tolerance level, denoted

by �out. In theory, �out should be set to a small number, such as 10�5 or 10�6 . In practice, we have

found cases in the BLP literature where 10�2 was used, possibly to offset the slow performance or

non-convergence of the minimization routine. As we illustrate in our Monte Carlo simulations below,



rate of convergence of a contraction mapping. The proof is in the appendix.

Theorem 3 states that the biases in evaluating the GMM objective function and its gradient at any

structural parameters are of the same order as the inner-loop tolerance adjusted by the Lipschitz con-

stant for the inner-loop contraction mapping. Recall that a smooth optimization routine convergences

when the gradient of the objective function is close to zero, by some metric. In the next theorem,

we analyze the numerical properties of the gradient. The theorem indicates circumstances in which

the outer loop might report convergence despite a numerically inaccurate inner loop.6 We also show

that the choice of the outer-loop tolerance, �out, should depend on the inner-loop tolerance �in and

the Lipschitz constant L. This is important because the outer loop tolerance determines the number

of significant digits for the solution. Using a tight outer loop tolerance also helps eliminate spurious

local minima.

Theorem 4. Let L(�) be the Lipschitz constant of the inner-loop contraction mapping for a given

� and let �in be the inner-loop tolerance. Let �̂ = arg max
�

fQ (�(�; �in))g : In order for the outer-

loop GMM minimization to converge, the outer-loop tolerance �out should be chosen to satisfy �out =

O
�

L(�̂)

1�L(�̂)
�in

�
; assuming




r2
�Q (�)

����=�(�̂;0)







� � �̂


 for � in a neighborhood of �̂ is bounded.

The function L(�̂)

1�L(�̂)
is increasing on [0; 1], the set of valid Lipschitz constants for a contraction

mapping. Therefore, if �in is large (the inner loop is loose), then �out must also be large (the outer

loop must be loose) for the optimization routine to converge. If the inner loop is slow because L is

close to 1, then for a fixed �in, �out should be even larger to ensure convergence. The proof is in the

appendix.

An immediate consequence of these results is that the researcher may be tempted to select toler-

ances based on the convergence of the algorithms, rather than the precision of the estimates them-

selves. In situations where the inner-loop is slow, a researcher may loosen the inner loop tolerance,

�in, to speed convergence of the contraction-mapping. By Theorem 4, the resulting imprecision in the

gradient could prevent the optimization routine from detecting a (possibly incorrect) local minimum

and converging. In turn, the researcher may be tempted to loosen the outer loop tolerance to ensure

convergence of the minimization routine. Besides concerns about imprecision in the estimates, raising

�out could also generate an estimate that is not in fact a local minimum.
6The numerical error in the gradient convergence test may encourage some researchers to use non-smooth optimization

methods. Our experiments with MATLAB’s version of a genetic algorithm and the simplex method on the BLP NFP
problem suggest that both non-smooth optimizers can report convergence to a point that is not a local minimum, even
with a tight inner loop tolerance �in and tight outer-loop tolerance �out. We can verify whether a point is a true local
minimum by starting a high-quality smooth optimization routine at that point. If it is a local minimum, the smooth
routine will immediately report convergence. For these reasons, we focus on smooth optimizers in this paper.
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4.3 Finite Sample Bias in Parameter Estimates from the Inner-Loop Nu-

merical Error

In this section, we discuss the small-sample biases associated with inner-loop numerical error. Assume,

given �in, that we have chosen �out to ensure that the algorithm is able to report convergence. Let

�? = arg max
�

fQ (�(�; 0)g be the maximizer of the finite-sample objective function without numerical

error. As economists, now we are interested in the errors in the final estimates, �̂ � ��, from using a

loose inner loop.

Theorem 5. Assume that



r�Q (�)

����=�(�̂;0)




 is bounded and that

O

�


� ��̂;�in�� � ��̂;0�


2
�
�
���Q�� ��̂;�in���Q (� (��; 0))

���+


r�Q (�)
����=�(�̂;0) 


 


� ��̂;�in�� � ��̂;0�


 :

The difference between the finite-sample maximizers with and without numerical error satisfies

O

�


�̂ � ��


2
�
�
���Q�� ��̂;�in���Q (� (��; 0))

���+O

 
L(�̂)



4.4 Large Sample Bias from the Inner-Loop Numerical Error

The previous section focused only on numerical errors for a finite data set. We now use statistical

theory to examine the large-sample properties of the BLP estimator using the NFP algorithm. Be-

fore, �? was the true minimizer of the finite-sample GMM objective function without any inner-loop

numerical errors. Now instead consider �0, the true parameters in the data generating process. Even

a researcher with a perfect computer program will not be able to recover �0 because of statistical

sampling error. Here we explore how numerical errors in the inner loop affect the consistency of the

BLP estimator.

Recall that �̂ corresponds to the minimizer of Q
�
�
�
�̂; �in

��
; the biased GMM objective func-

tion with the inner-loop tolerance �in: Let �Q (� (�; 0)) = E [Q (� (�; 0))] be the probability limit of

Q (� (�; 0)), as either T ! 1 or J ! 1, as in Berry, Linton and Pakes (2004). Let �� be the mini-

mizer of �Q (� (�; �in)), the population objective function with the inner-loop tolerance �in > 0. Clearly,

�0 = arg min �Q (� (�; 0)) if the BLP model is identified.

Let asymptotics be in the number of markets, T , and let each market be an iid observation. By

standard consistency arguments (Newey and McFadden 1994), �� will converge to �0 if Q (� (�; 0))

converges to �Q (� (�; 0)) uniformly, which is usually the case with a standard GMM estimator. Further,

the rate of convergence of the estimator without numerical error from the inner loop is the standard

parametric rate,
p
T . By the triangle inequality,




�̂ � �0



 � 


�̂ � ��


+



�� � �0


 = O

 s
L(�̂)

1� L(�̂)
�in

!
+O

�
1=
p
T
�
; (7)

where



�̂ � ��


 = O

�r
L(�̂)

1�L(�̂)
�in

�
because we showed O

�


�̂ � ��


2
�
� O

�
L(�̂)

1�L(�̂)
�in

�
in the pre-



numerical derivatives. The gradient is approximated by

rdQ (� (�; �in)) =
�
Q (� (� + dek; �in))�Q (� (� � dek; �in))

=



5.1 NFP Algorithm Implementations

For all NFP implementations, we examine the one-step GMM estimator with Nevo’s (2000) suggestion

of using the weighting matrix W = (Z 0Z)�1, where Z is the TJ � D matrix of instruments zj;t;k.8

We use one fake data set and one real data set to show that NFP with loose inner loop tolerances can

lead to incorrect parameter estimates.

We use three implementations of NFP for our real data and fake data tests. We use the same data

and set of starting values for all three implementations. We use our numerical theory results from

section 4 to guide us in the selection of inner and outer loop tolerances for the NFP algorithm. To

assess the importance of those findings, we construct three scenarios which we examine for each Monte

Carlo experiment. In the first scenario, we explore the implications of a tight outer loop tolerance, set

at �out = 10�6; and a loose inner loop tolerance, set at �in = 10�4. The former outer loop tolerance

is the default setting for most state-of-the-art optimization algorithms. However, from our numerical

theory results, we know the latter inner loop tolerance is too large. One could think of this scenario

as representing the “frustrated researcher” who loosens the inner loop to speed the apparent rate of

convergence. In the second scenario, we explore the results from Theorem 4, whereby the loose inner

loop tolerance could, in turn, prevent the outer loop from converging. Specifically, we keep �in = 10�4

and set �out = 10�2. One can think of this scenario as representing the attempt of the researcher to

loosen the outer loop to force it to converge, even though in practice the converged point may not

actually satisfy the first-order conditions. In our third scenario, we implement the “best practice”

settings for the NFP algorithm with �in = 10�14 and �out = 10�6.

For all implementations of NFP, we use the same programming environment (MATLAB) and

the same optimization package (KNITRO using the TOMLAB interface). We selected MATLAB

because this is a commonly-used software package among practitioners. We also selected the KNITRO

optimization package instead of MATLAB’s built-in optimization routines as the former is a highly-

respected, state-of-the-art solver in the optimization community (Byrd, Nocedal and Waltz 1999).

For our fake data example, we use numerical derivatives. For our real data example, we also supply

derivatives for each algorithm because all local optimization methods improve if the user supplies

exact derivatives of the objective function.9

We also customized several aspects of the NFP algorithm to increase speed. In the case of NFP, the
8We choose a simple weighting matrix because our focus is on comparing algorithms, not finding the most statistically

efficient estimator.
9Another option is to use automatic differentiation software. Automatic differentiation software is automatically used

by some languages, such as AMPL, and can be accessed with the TOMLAB interface for MATLAB. Our experience
has been that automatic differentiation is very slow for NFP. Also, software packages like AMPL are impractical for
NFP algorithms because AMPL is a problem definition language, not a general purpose programming language like
MATLAB. Therefore, we use MATLAB for all our empirical analysis. However, in practice, many users may find AMPL
more convenient for the MPEC implementation. One warning: the automatic differentiation overhead in AMPL uses
lots of computer memory.
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most notable speed improvements came from exploiting as much as possible the built-in linear algebra

operations (“vectorization”) for the inner loop. In addition, we exploited the normality assumption

for F� (�; �) to concentrate the means out of the parameter search under the NFP algorithm, as

suggested in Nevo (2000b). Therefore, the NFP algorithm can be recast to search only over the

standard deviation of the random coefficients, rather than both the means and standard deviations.

Relaxing the normality assumption would prevent the use of this simplification (except perhaps in

other location and scale families), which could improve the relative speed performance of MPEC over

NFP even further.The Fake Data Generating Process

We use the demand model from section 2. In this section we describe a data generating process

for a base case. The individual experiments perturb aspects of the data generating process from this

base case. We allow for K = 3 observed characteristics, in addition to prices. We also estimate a

random coefficient on the intercept, �0
i , which models the relative attractiveness of purchasing any of

the products instead of the outside good. �pi , the price coefficient, is also random.

We focus on markets with a fairly large number of products, J = 75, to ensure that our results

are not due to sampling error. We also consider an intermediate number of statistically independent

markets, here T = 25. Although not reported, we noticed large biases in the mean and standard

deviation of the intercept, �0
i ; as well as functions of the parameters (like price elasticities) when a

small number of markets was used. Intuitively, the moments of �0
i are identified in part from the share

of the outside good, and more markets are needed to observe more variation in the outside good’s

shares.

For product j in market t, let26664
x1;j;t

x2;j;t

x3;j;t

37775 � N
0BBB@
26664

0

0

0

37775 ;
26664

1 �0:8 0:3

�0:8 1 0:3

0:3 0:3 1

37775
1CCCA :

Likewise, �j;t � N
�

0; �2
�

�
, with the default �2

� = 1. Price is

pj;t = j0:5 � �j;t + ej;tj+ 1:1 �

�����
3X
k=1

xk;j;t

����� ;
where ej;t � N (0; 1) is an innovation that enters only price. Prices are always positive. Prices are

endogenous as �j;t enters price. For each product j in market t, there is a separate vector zj;t of D = 6



cients. To maintain consistency with the application in BLP (1995) and the related empirical litera-

ture, we assume independent normal random coefficients on each product characteristic and the inter-

cept. Thus, F� (�; �) is the product of five independent normal distributions (K = 3 attributes, price

and the intercept) characterized by means and standard deviations contained in �. The true values of

the moments of the random coefficients �i =
�
�0
i ; �

1
i ; �

2
i ; �

3
i ; �

p
i

	
are E [�i] = f�1; 1:5; 1:5; 0:5; ] =0i



interpretation of their findings. With multiple starting values, careful implementation of the numerical

procedures, and state-of-the-art optimization solvers, the BLP GMM estimator appears to produce

reliable estimates. 13

5.3 Fake Data, Numerical Derivatives and False Parameter Estimates

For NFP, the numerical theory in section 4 raises several concerns about the common practice of

setting the tolerance, �in; too high (too loose). Section 4.5 shows that a combination of a loose

inner loop, numerical derivatives and a smooth optimization routine can produce incorrect parameter

estimates. Also recall that Theorem 4 shows that if �in is too loose, �out must be set to be too loose

in order for the routine to be able to report convergence.

In this subsection, we explore empirically the problems with loose inner loop tolerances and nu-

merical derivatives. We create one simulated fake dataset, using the data generating process from

section 5.1. Holding the simulated data fixed, we first compare the estimates produced from 100

randomly-chosen starting values for the own-price demand elasticities. We run each of the three NFP

implementations described in section 5.1 for each of the 100 vectors of starting values.Table 1 reports

the results for the 100 different starting values. The first row reports the fraction of runs for which the

routine reports convergence. As Theorem 4 shows, if the inner loop tolerance is a loose �in = 10�4 and

the outer loop tolerance a standard value of �out = 10�6, the routine will never report convergence.

Column one confirms this finding as only 2% of the runs with a loose inner loop and tight outer loop

converge. In contrast, column two indicates that the algorithm is more likely to converge (30% of the

runs) when we also loosen the tolerance on the outer loop. As we will show below, this semblance of

convergence is merely an artifact of numerical imprecision that leads to misleading estimates. Finally,

NFP with tight tolerances converges in 95% of the runs.

To diagnose the quality of the estimates, the second row of Table 1 shows the fraction of runs

where the reported GMM objective function value was within 1% of the lowest objective function that

we numerically found across all three NFP implementations and all 100 starting values (300 cases).



Table 1: Three NFP Implementations: Varying Starting Values for One Fake Dataset, with Numerical
Derivatives

NFP NFP NFP Truth
Loose Inner Loose Both Tight

Fraction Reported Convergence 0.02 0.30 0.95
Frac. Obj. Fun. < 1% Greater than “Global” Min. 0.0 0.0 0.25

Mean Own Price Elasticity Across All Runs -12.28 -12.30 -5.77 -5.68
Std. Dev. Own Price Elasticity Across All Runs 19.44 19.43 0.0441

Lowest Objective Function Value 0.0217 0.0327 0.0169
Elasticity for Run with Lowest Obj. Value -5.89 -5.63 -5.77 -5.68

We used 100 starting values. The NFP loose inner loop implementation has �in = 10�4 and �out = 10�6. The NFP
loose both implementation has �in = 10�4 and �out = 10�2. The NFP tight implementation has �in = 10�14 and
�out = 10�6. We use numerical derivatives using KNITRO’s built-in procedures.

NFP tight should not find the global minimum every time, because a gradient-based optimization

routine may indeed converge to a local minimum.

The third and fourth rows of Table 1 provide measures to assess the economic implications of our

different implementations. We use estimated price elasticities to show how naive implementations

could produce misleading economic predictions. In the third row, we report the mean own price

elasticity, across all 100 starting values, all J = 25 products and all T = 75 markets:

1
100

HX
h=1

1
T

TX
t=1

1
J

JX
j=1

�pj;t

�
�̂h
�
;

where �̂h is the vector of parameter estimates for the hth starting value and �pj;t
�
�̂h
�
is the own price-

elasticity of firm j in market t, at those parameters. The fourth row reports the standard deviation

of the mean own price elasticity across all 100 runs: 1
T

PT
t=1

1
J

PJ
j=1 �

p
j;t

�
�̂h
�
.

Beginning with the third row, first note that in the final column we report the own-price demand

elasticity evaluated at the true parameter values: -5.68.



Table 2: Three NFP Implementations: Varying Starting Values for Nevo’s Cereal Dataset, with
Closed-Form Derivatives

NFP NFP NFP
Loose Inner Loose Both Tight

Fraction Reported Convergence 0.0 0.81 1.00
Frac. Obj. Fun. < 1% Greater than “Global” Min. 0.0 0.0 1.00

Mean Own Price Elasticity Across All Runs -3.75 -3.69 -7.43
Std. Dev. Own Price Elasticity Across All Runs 0.03 0.08 ~0

Lowest Objective Function Value 15.3816 15.4107 4.5615



The results in Table 2 are of the same format as Table 1. As Theorem 4 predicts, in row 1 we find

that 0% of the NFP loose inner loop starting values converge. Loosening the outer loop is one approach

to finding convergence; the second column finds that 81% of starting values report convergence when

this is done. 100% of the starting values converge for NFP tight. The second row shows that 100%

of the NFP tight starting values find the global minimum, 4.5615, in Nevo’s cereal data. None of the

NFP loose tolerance implementations find the global minimum.

The loose inner loop and loose both methods find a mean own-price elasticity of -3.75 and -3.69,

respectively. This is about half the value of -7.43 found with NFP tight. Further, the estimates are

all tightly clustered around the same points. With standard deviations of 0.03 and 0.08 for the loose

inner loop methods, the answers are consistently wrong across runs. The fifth row shows the smallest

objective function values found by the loose inner loop and loose both routines are 15.38 and 15.41,

respectively. These are far from the true “global” minimum of 4.56.

These results show that a naive but otherwise careful researcher might feel that his or her estimates

were correct because even trying 25 different starting values always produce around the same estimates.

Even if the researcher correct coded the derivatives in closed form and used a high-quality, professional

optimizer like KNITRO, the NFP loose inner and loose both implementations can consistently converge

to the wrong elasticity, and the elasticity can be half of the true value. Thus, there is no diagnostic

that a researcher can do that will detect all types of numerical error. With Nevo’s cereal dataset, an

inner loop tolerance that is too loose will lead to consistent but consistently wrong own-price elasticity

estimates. Only using an a priori theoretically correct setting, like a tight inner loop tolerance, will

avoid these errors.

6 A Constrained Optimization Approach to Improve Speed

We have established that only NFP with a tight inner loop tolerance can produce reliable parameter

estimates. According to Theorem 5, if we wish to achieve the default numerical precision in the outer

loop of 10�6, we need to set the NFP inner loop tolerance to 10�12 or tighter, for reliable parameter

estimates. Using a tight inner loop means NFP may be slow. Further, in the previous section, we

established that the NFP method’s inner loop converges linearly and can be slow when the Lipschitz

constant is close to 1. A slow inner loop might cause researchers to choose loose tolerances for the

inner loop, which might lead to problems in establishing the convergence of the outer loop as well as

errors in the reported parameter estimates.15

15Alternative methods to a contraction mapping for solving systems of nonlinear equations with faster rates of
convergence typically have other limitations. For instance, the traditional Newton’s method is only guaranteed to
converge if the starting values are close to a solution, unless one includes line-search or trust-region procedure subject
to some technical assumptions. In general, most practitioners would be daunted by the task of nesting a hybrid Newton

23



In this section, we propose an alternative algorithm based on Su and Judd’s (2007) constrained

optimization approach for estimating structural models. Below we show that the MPEC approach

generates the same solution as NFP. MPEC can save computation time while completely avoiding

issues of numerical precision by eliminating the inner loop of the NFP algorithm. In their original

paper, Su and Judd focus more on solving for the unknown variables in economic models, such as

value functions in single-agent dynamic programming problems and the entry probabilities of rival

firms in static Bertrand entry games with multiple equilibria. We apply this insight to the recovery



The constrained optimization defined by (9) can be solved using modern nonlinear optimization

solvers developed by researchers in numerical optimization. Unlike the NFP algorithm, where users

need to exercise caution in the choice of tolerance levels for both inner and outer loops, the defaults

on feasibility and optimality tolerances in nonlinear optimization solvers for constrained optimization

are usually sufficient. These default tolerances have been established to work well in hundreds or

thousands of papers in the numerical analysis literature. The default tolerances are usually sufficient

because the market share equations and GMM objective function (without an inner loop) are exposed

to the optimization routine. In short, MPEC lets a state-of-the-art optimization algorithm handle all

of the computational aspects of the problem. In contrast, with NFP, the researcher needs to customize

a nested-fixed-point calculation, which could result in naive errors.

In addition to simplifying implementation, bypassing the inner loop reduces several sources of nu-

merical error that could, possibly, lead to non-convergence. We have detected some common practices

with the coding of the inner loop that could naively lead to numerical error. These include loose choices



routine is exposed to the constraints, the derivatives of the constraints and of the objective function,

and the sparsity pattern of the constraints. On sparsity, recall that demand shocks for market t do

not enter the constraints for market t+ 1. Therefore, this constrained optimization problem is highly

sparse.

Most constrained optimization solvers are based on sequential quadratic programming or interior

point methods. As stated earlier, these solvers use Newton-based methods. Economists are often

skeptical about Newton’s method because it might not converge if the starting point is far away from

the solution. While this perception is true for the purest textbook version of Newton’s method, modern

Newton-like methods incorporate a line-search or a trust-region strategy to give more robustness to

the choice of starting values. We refer readers to Nocedal and Wright (2006) and Kelley (1995, 1999,

2003) for further details on modern optimization methods for smooth objectives and constraints.

Finally, our implementation of MPEC for the BLP model is slightly more sophisticated than the

simple explanation in (9). We actually treat the moments as separate parameters, so that the problem

being solved is
min
�;�;�

�0W�

subject to g (�) = �

s(�; �) = S

: (10)

The solution to this new problem is the same as (9). The objective function is now a simple quadratic,

�0W�, rather than a more complex, direct function of �; the additional constraint g(�) � � = 0

is linear in both � and � and, hence, does not add additional difficulties to the original problem.

Computationally, the advantage with this equivalent formation is that we increase the sparsity of the

constraint Jacobian and the Hessian of the Lagrangian function by adding the additional variables

and constraints. In numerical optimization, it is often easier to solve a large but sparse problem than

a small but dense problem. Another advantage of MPEC over NFP is that the objective function

and constraints in MPEC are likely more “smooth” or less “nonlinear” in the unknowns than the NFP

objective function is in �. In NFP, the mapping from � to the objective function value uses the very



7 Speed Comparisons of MPEC and NFP

NFP with a tight inner loop will produce correct parameter estimates if many starting values are

used. However, NFP can be slow on some datasets. This section uses fake data and the Nevo cereal to

compare the speed of MPEC and NFP. We present examples where MPEC performs better than NFP.

This is not meant to be a theorem: there could be cases where NFP is faster than MPEC. We now

show that, in many situations, NFP may be computationally impractical in terms of execution time.

In contrast, we will show that MPEC’s execution time appears to be relatively invariant across these

situations. Our approach exploits the Lipschitz constant for the BLP contraction mapping derived

in section 4.1. We conjecture that data with a higher Lipschitz constant, and hence a higher upper

bound on the rate of convergence of the inner loop, may slow NFP estimation. The idea will be to

manipulate various components of the data-generating process in order to measure their respective

impact on the Lipschitz constant. We have no reason to believe cases exist where MPEC grows really

slow with some equivalent of a Lipschitz constant. Therefore, we suspect that MPEC will be more

robust against extremely slow performance. Keep in mind that is these slow-performing cases where

a researcher will be tempted to loosen the inner loop tolerance, leading to the problem of incorrect

parameter estimates that we earlier highlighted.

7.1 NFP and MPEC Implementations

We code NFP and MPEC using closed-form derivatives. As the proof of Theorem (6) shows, the

components of these derivatives are the same for both methods. We the quadratic form of MPEC in

(10). We give the sparsity pattern of the constraints tomore



the two algorithms are initialized to have the same objective function value.18 For each NFP starting

value, we run the inner loop once and use this vector of demand shocks and mean taste parameters

as starting values for MPEC. This is our attempt to equalize the starting values across NFP and

MPEC.19



Table 3: Lipschitz Constants for the NFP Algorithm
Parameter Std. Dev. of # of Mean of Intercept

Scale Shocks � Markets T E
ˆ
�0
i

˜
Altered Mean Altered Mean Altered Mean Altered Mean
Value Lipschitz Value Lipschitz Value Lipschitz Value Lipschitz
0.01 0.985 0.1 0.808 25 0.860 -2 0.771
0.1 0.971 0.25 0.813 50 0.871 -1 0.871
0.50 0.887 0.5 0.832 100 0.888 0 0.936
0.75 0.865 1 0.871 200 0.888 1 0.971
1 0.871 2 0.934 2 0.988
1.5 0.911 5 0.972 3 0.996
2 0.938 20 0.984 4 0.998
3 0.970
5 0.993



products within each market and then across markets. For each algorithm, we report the total CPU

time required for all 10 runs. The results are reported in Table 4. All numbers in Table 4 are means

across the 20 replications.

Turning to Table 4, we can see that our numerical theory prediction holds in practice. As expected,

NFP with a tight inner loop tolerance and MPEC converge in all scenarios. We also find that MPEC

and NFP generate identical point estimates, as one would expect since they are statistically the

same estimator (Theorem 6). We compute the root mean-squared error (RMSE) and the bias of

the own-price elasticities. For a parameter �



Table 4: Monte Carlo Results Varying the Lipschitz Constant
Intercept Lipschitz Implementation Runs Converged CPU Time (s) Elasticities
E
ˆ
�0
i

˜
Constant (fraction) Bias RMSE

-2 0.806 NFP tight 1 1184.1 0.026 0.254
MPEC 1 1455.1 0.026 0.254

-1 0.895 NFP tight 1 1252.8 0.029 0.258
MPEC 1 1528.4 0.029 0.258

0 0.950 NFP tight 1 1352.5 0.029 0.265
MPEC 1 1564.1 0.029 0.265

1 0.978 NFP tight 1 1641.1 0.029 0.270
MPEC 1 1562.5 0.029 0.270

2 0.991 NFP tight 1 2498.1 0.030 0.273
MPEC 1 1480.7 0.030 0.273

3 0.997 NFP tight 1 5128.1 0.031 0.276
MPEC 1 1653.9 0.030 0.278

4 0.999 NFP tight 1 9248.5 0.032 0.279
MPEC 1 1881.8 0.031 0.279

There are 20 replications for each experiment. Each replication uses five starting values to ensure a global minimum is
found. The NFP tight implementation has �in = 10�14 and �out = 10�6. There is no inner loop in MPEC; �out = 10�6

and �feasible = 10�6. The same 100 simulation draws are used to generate the data and to estimate the model.

the inner loop, it avoids all the potential risks of naive implementations with loose tolerances. We

therefore recommend MPEC as a safer and more reliable algorithm for the estimation of the BLP

GMM estimator.

7.5 Varying the Number of Markets

In the previous section, we demonstrated that MPEC has a speed advantage over NFP when the

Lipschitz constant is high. However, some readers may be concerned that MPEC may not be practical

as one increases the number of products or the number of markets. The reason is that there is one

nuisance optimization parameter, �j;t, for each product j and market t combination. As the number

of markets T (or the number of products J) increases, there will be more �j;ts over which to optimize

and, correspondingly, more constraints. The next set of Monte Carlo experiments compare estimation

with differing numbers of markets to see whether MPEC’s speed advantage is related to having a

small number of demand shocks.

Table 5 returns to the base specification, and varies only the number of markets, T . As the

number of markets increases, not surprisingly both methods take longer. MPEC and NFP with tight



Table 5: Monte Carlo Results Varying the Number of Markets
# Markets Lipschitz Implementation Runs Converged CPU Time (s)

T Constant (fraction)
25 0.937 NFP Tight 1 258.5

MPEC 1 226.8
50 0.944 NFP Tight 1 780.0



8 Other Computational Issues with BLP

8.1 Simulating Market Shares

The times for all methods reported in Table 4, the Monte Carlo results, are lower bounds on the

actual speeds of these methods in applications. By shutting down simulation error, we were able to

get by with ns = 100 simulation draws in the market share equations, (3). Our experiments with

data generated using many more draws suggests that perhaps 10,000 draws might be appropriate to

eliminate most simulation error, for models with five independent normal random coefficients. Using





can easily adapt the estimator to accommodate a structural (full-information) approach that models



maximize the following log-likelihood function

l (�) =
TX
t=1

log (fs;p (st; pt; �)) :

This would consist of a nested inner-loop to compute the demand shocks, �j;t; via numerical inversion

(the NFP contraction-mapping).

The equivalent MPEC approach entails searching for the vector of parameters (�; �) that maxi-

mizes the constrained optimization problem

lMPEC (�; �) =
PT
t=1 log

�
f�j� (st j xt; pt; �;
) jJ�!sj f� (pt j zt; 
;
)

�
subject to s(�; �) = S

: (13)

10 Extension: Dynamic Demand Models

Starting with Melnikov (2000), a new stream of literature has considered dynamic analogs of BLP with

forward-looking consumers making discrete choice purchases of durable goods (Nair 2007, Gordon

2007, Carranza 2008, Gowrisankaran and Rysman 2008, Dubé, Hitsch and Chintagunta 2008, Lee

2008, Schiraldi 2008). The typical implementation involves a nested fixed point approach with two

nested inner loops. The first inner loop is the usual numerical inversion of the demand system to

obtain the demand shocks, �: The second inner loop is the iteration of the Bellman equation to obtain

the consumer’s value function



consumer r’s expected value of waiting is

vr0 (pt; �r) = �
R

max

8<: vr0 (p0t�j +  ; �r) + �0

maxj
�
�rj � �r (p0t�j +  +  ) + �j + �j

	
9=; dF�(�)dF ;� ( ; �)

= � log

 
exp (vr0 (Pj (pt; �p) +  ; �r)) +

P
j

exp
�
�rj � �r (Pj (pt; �p) +  ) + �j

�!
dF ;� ( ; �) :

(15)

To simplify the calculation of the expected value of waiting, we approximate it with Chebyshev

polynomials (Judd 1998).22 We outline the Chebyshev approximation in Appendix C.

We use a discrete distribution to characterize the consumer population’s tastes at date t = 1,

�h �

24 �h

�h

35 =

8>>>>><>>>>>:
�1; Pr(1) = �1

...
...

�R; Pr(R) = 1�
R�1

�
r=1

�r

:

This heterogeneity implies that certain types of consumers will systematically purchase earlier than

others. Thus, the mass of remaining consumers of a given type r, Mr
t ; evolves over time as follows:

Mr
t =

8><>: M�r ; t = 0

Mr
t�1S

r
0 (Xt�1; �r) ; t > 0

:

In a given period t; the market share of product j is

sj (pt; �) =
R

�
r=1

�t;r
exp(�rj��

rpj;t+�j;t)

exp(vr0(pt;�r))+
PJ
k=1 exp(�rk��rpk;t+�k;t)

; (16)

where

�t;r =

8><>: �r t = 0

Mr
tP

rM
r
t

; t > 0

is the proportion of type r consumers still in the market at date t:

The empirical model consists of the system (14) and (16), which we write more compactly as

ut �

24  t

�t

35 =

24 log(pt)� p0t�1�

r�where



parameters. The multivariate normal distribution of (�j;t;  j;t) induces the density on the observable

outcomes, (p; St),

fp;S (pt; St; �; �;
) =
1

(2�)
3J
2 j
j

1
2

exp
�
�1

2
u
0

t

�1
u ut

�
jJt;u!Y j

where Jt;u!



assume there is only a single consumer type, R = 1: It is easy to show that in this case, �t can be

computed analytically by log-linearizing the market shares, (16).23 We begin with this case because

it only involves a nested call to the calculation of the expected value of waiting. Below we will allow

for more consumer types to see what happens when we also require a nested call to the numerical

inversion of the shares. We assume that the consumers’ preferences are: (�1; �2; �) = (4;�1;�:15)

and the discount factor is � = 0:99:24 We assume that the density of prices has the transition rules24 p1;t = 5 + :8p1;t�1 + :2p2;t�1 +  1;t

p2;t = 5 + :1p1;t�1 + :55p2;t�1 +  2;t

35 :
Note how the lagged price of product 2 effects the price of product 1, and vice versa. Finally, we assume

the supply and demand shocks satisfy ( j;t; �j;t) � N

0@0;

24 1 0:5

0:5 1

351A and are independent across

markets and time periods. For our Chebyshev approximation, we use 6 grid points and a 6th order

polynomial. For the NFP algorithm, we use an inner loop tolerance of 10�14 for the calculation of the

expected value of waiting.

Results from 25 replications of this first experiment are reported in Table 6. We report the

bias and RMSE associated with each of the structural parameters, for MPEC and NFP respectively.

Interestingly, MPEC seems to produce estimates that, on average, have lower bias while NFP seems

to produce lower RMSE. This may be a consequence of using only one starting value per replication.

More importantly, the average CPU time for MPEC is just over 25% of the CPU time for NFP.

Now we run a second Monte Carlo experiment where we allow for two types of consumers.

11 Conclusions

In this paper, we analyzed the numerical properties of the NFP approach proposed by BLP to estimate

the random coefficients logit demand model. Theoretically, the NFP approach may be slow, as NFP’s

inner loop is only linearly convergent and and NFP is more vulnerable to error due to the inner loop.

We showed the Lipschitz constant is a measure of an upper bound to the convergence rate of NFP’s

inner loop’s contraction mapping. We numerically evaluated the Lipschitz constant for particular



Bias RMSE

�: taste parameters MPEC NFP MPEC NFP
�1 : 4 7.5E-03 4.6E-02 1.7E-01 1.5E-01
�2 : -1 6.2E-03 3.7E-02 1.5E-01 1.2E-01
� : -0.15 -1.1E-04 -2.9E-04 8.0E-04 5.4E-04

�: price transitions
int1 : 5 9.4E-03 1.9E-02 4.9E-02 4.6E-02
�1;1 : 0.8 9.5E-05 -2.1E-04 1.2E-03 1.2E-03
�1;2 : 0.2 -1.6E-04 -3.8E-05 1.5E-03 1.7E-03
int2 : 5 8.9E-03 6.6E-04 5.9E-02 3.2E-02
�2;1 : 0.1 -7.0E-05 1.5E-04 1.1E-03 5.6E-04
�2;2 : 0.55 -6.5E-05 -4.5E-04 1.4E-03 8.8E-04


: variances of shocks
1 -4.1E-03 -4.5E-03 1.7E-02 1.7E-02

0.866 -1.7E-03 -5.5E-04 1.5E-02 1.4E-02
0.5 -7.9E-04 -2.4E-03 2.0E-02 1.9E-02

Avg CPU time (sec) 4579.3 16,971

Table 6: Monte Carlo Results for Dynamic BLP with One Consumer Type: NFP versus MPEC

coefficient logit demand model. MPEC is quicker to compute and avoids numerical errors because it

avoids repeatedly inverting the market shares equations numerically. It also allows the researcher to

access state-of-the-art constrained optimization solvers.

To assess the practical aspects of MPEC versus NFP, we conducted a number of Monte Carlo



collection of three loops (optimization, market shares, dynamic programming) makes the traditional

BLP approach nearly untenable in terms of computational time. Current work (Lee 2008, Schiraldi

2008) further extends the number of inner loops being solved in estimation. As demand models become

richer, the computational benefits of MPEC over NFP become greater.
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A Proofs

A.1 Proof of Theorem 3

By a Taylor series expansion of Q (�) around � (�; 0), we have
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then the regular triangle inequality, and then finally a Taylor series expansion, we have
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As we have assumed
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Hence, the norm of the numerically inaccurate gradient, evaluated at an arbitrary point ~�, is bounded

above by a term on the order of L(�̂)

1�L(�̂)
�in and a term involving the arbitrary point ~� and the GMM

estimator with error, �̂. The term O
�

L(�̂)

1�L(�̂)
�
�
indicates that the numerical error in the gradient is

linearly increasing in �in (decreasing �in decreases the numerical error in the gradient).

A.3 Proof of Theorem 5



Rearranging the equality involving Q
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�
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we have
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To use this bound numerically, assume that



r�Q (�)

����=�(�̂;0)




 is bounded and that

O

�


�(�̂;�in)� �(�̂;0)



2
�
�
���Q��(�̂;�in)

�
�Q (�(��; 0))

���+



r�Q (�)

����=�(�̂;0)




 


�(�̂;�in)� �(�̂;0)



 :

This allows us to focus on the numerical error from the NFP algorithm’s inner loop and the bias in

objective values. We also know from the choice of the contraction mapping inner loop tolerance that
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A.4 Proof of Theorem 6

The NFP method (4) solves the following unconstrained problem

min�Q (� (�)) : (18)

The first-order condition of (18) is

@Q (� (�))
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=
d�

d�

0 @Q
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= 0: (19)

The constrained optimization formulation of (18) is

min
(�;�)

Q (�)

s.t. s(�; �) = S:
(20)
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The Lagrangian for (20) is L (�; �; �) = Q(�) � �T (S � s(�; �)), where � is the vector of Lagrange

multipliers. The first-order conditions of (20) are
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1
T

TX
t=1

�0tzt

Gradients for MPEC

@sj(�t; �)
@�k

=
Z
Tj(�t; �; �)(xj;k;t �

X
i

Ti(�t; �; �)xk;i;t)dF (�)

@sj(�t; �)
@�

=
Z
Tj(�t; �; �)(pj;k;t �

X
i

Ti(�t; �; �)pk;i;t)dF (�)

@sj(�t; �)
@��k

=
Z
Tj(�t; �; �)(xj;k;t �

X
i

Ti(�t; �; �)xk;i;t)�kdF (�)

@sj(�t; �)
@��

=
Z
Tj(�t; �; �)(pj;k;t �

X
i

Ti(�t; �; �)pk;i;t)�K+1dF (�)

@sj(�t; �)
@�j;t

=
Z
Tj(�t; �; �)(1� Tj(�t; �; �))dF (�)

@sj(�t; �)
@�i;t

= �
Z
Tj(�t; �; �))Ti(�t; �; �))dF (�)

@g(�)0Wg(�)
@�

= 2g(�)0W
@g(�)
@�



To solve for the Chebyshev weights, we use the Galerkin method described in Judd (1992). We define

the residual function:
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Next, we let X be the matrix of K Chebyshev polynomials at each of the G points on our grid (i.e.

G nodes). Our goal is to search for parameters, 
; that set the following expression to zero:

X 0R (p; 
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and computing the lower block of the Jacobian as
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