The Role of Information and Monitoring on Collusion

Christian Rojas University of Massachusetts Amherst

Motivation

- Stylized IO facts on factors affecting collusion: 1.
	- **Monitoring** of cartel members (Stigler)
	- **Demand information** (Tirole)
- Well-known theories inform our design: $\overline{2}$.
	- Green and Porter (1984), GP
	- Finite price wars triggered by low demand \rightarrow
	- Collusion more stable when demand is high \rightarrow
	- Rotemberg and Saloner (1986), RS
		- Price wars observed in high demand \rightarrow
		- Collusion more stable during low demand \rightarrow

,

,

,

,

Theory: Assumptions

- Homogenous products $\overline{}$
- **Cournot competition** $\left\langle \right\rangle$
- Symmetric firms and constant MC $\left\langle \right\rangle$
- Infinitely repeated game $\overline{}$
- $\left\langle \right\rangle$ **Stochastic (uncertain) demand**
	- RS: f,
		- ⋋ Uncertain future demand, except for t+1 (tomorrow),
		- ⋋ **Perfect monitoring and perfect information on "(t+1)"**
		- $GP:$

f,

- Uncertainty for all future (and past) demand schedules ⋋
- \rightarrow **Imperfect monitoring and imperfect information**

Theory: RS Equilibrium

- Demand is stochastic but we all know that tomorrow is \mathcal{P} "Christmas"
- For a large enough demand shock: \sum

D	C	\bigcup_{high}	\bigcup_{i}	\bigcup_{i}	\bigcup_{i}	\bigcup_{i}	\bigcup_{i}
---	---	------------------	---------------	---------------	---------------	---------------	---------------

Collusion is more feasible in "bad times" $\overline{\Sigma}$

$$
\begin{array}{ccc}\nD & C & \longrightarrow & E & F & F \\
\hline\nlow & 1 & 1\n\end{array}
$$

- Grim-trigger strategy is assumed (but not necessary) $\sum_{i=1}^{n}$
- Other equilibria, e.g. always defect $\sum_{i=1}^{n}$

Experimental Design

- Two Quantity choices (L, H), prisoner's dilemma $\sum_{i=1}^{n}$
- 3 Demand states (three payoff matrices): $\overline{\mathbf{y}}$
	- f, *high* (20%) - *h*
	- f, *medium (60%) - m*
	- f, *low l*
- 30 rounds, then game ends with 25% probability \sum
- 3 treatments: \sum
	- FI: demand information + perfect monitoring (RS) f,
	- M: perfect monitoring f,
	- IM: imperfect monitoring (GP) f,

 1.00 , 1.00°

Neci
Choice is
"B" $3.50, 0.60$ $^{-1}$

Experimental Design

- 464 subjects, 15,000 + obs
- Extensive training: instructions, practice $\overline{}$ questions, quiz, messages
- Several parameterizations (P1, P2, P3): \sum RS:
	- Incentive to collude in *medium* and low demand $(P1)$
	- Incentive to collude in all demand states (P2)
	- GP: not feasible $(P1)$; punishment length, $N^*=3$, periods (P2)
- Robustness checks: control for risk aversion \sum (P3), different demand draws (P2b)

Results (Parameterization 2)

Results: Information and Monitoring

L \cdot ** Both* players chose *L*

Results FI Treatment (RS theory)

Results: RS (FI treatment)

Results: RS (FI treatment)

- Does RS strategy explain data better than other strategies? Š.
	- **Random strategy** Š.
	- *s* "Tit-for-Tat" strategy
	- Finite punishment strategies (after defection) Š.
	- Grim strategy (after defection) Š.
- 1. Indicator variable determines the "theoretical" state (coop=1 or dev=0) for each strategy (an "automaton")
- 2. Probit model of actual choice (coop=1, $dev=0$) on "theoretical" state
- 3. Likelihood-ratio tests wrt random strategy

Results: RS (FI treatment)

- Strategies implied by RS equilibrium seem $\sum_{i=1}^{n}$ supported by data
- Grim strategy appears to explain data best $\sum_{i=1}^{n}$
	- Important: grim strategy is assumed by RS to f, derive their predictions
- $\overline{\mathbf{y}}$ These are tests on *individual* choices
- $\sum_{i=1}^{n}$ Test on *outcomes:*
	- Parm. 1: 54% (RS), 51% (always collude), 29% f, (always defect), 21% (H,L or L,H)
	- *71% (always collude)*f, (always defect), 12% (H,L or L,H)

Results: GP (IM treatment)

- Cooperation is lower during price war periods predicted by GP (especially for infinite price wars)
- How does GP do against other individual (complex) S_{\cdot} strategies?
- Random strategy, and "threshold" strategies based on Š. noisy signal (price)
	- 1. One threshold:
		- Deviation triggered by low price; reversion to collusion Š. after fixed periods or never (grim strategy)
	- 2. Two thresholds:
		- Deviation triggered by a low price; reversion to collusion Š. after a high price

Random *GPN*One-Threshold, N=punishment period

Two-Thresholds

Results: GP (IM treatment)

- Random strategy can be rejected in favor of $\sum_{i=1}^{n}$ **GP** equilibrium
- Grim strategy appears to explain data best \sum
- There are trigger strategies, but different than $\sum_{i=1}^{n}$ predicted by GP
	- Longer duration, or duration determined by signal f,
	- Not necessarily triggered by the predicted signals f,
- $\sum_{i=1}^{n}$ Test on *outcomes:*
	- Parm. 1: 72% (GP), 50% (GP3), 37% (always f, defect)
	- Parm. 2: 62% (GP), 51% (GP3), 33.6% (always f, defect)

Conclusion

- Monitoring appears to matter the most in this $\sum_{i=1}^{n}$ setting
- Less information may increase collusion $\sum_{i=1}^{n}$

Robustness and Caveats

- **Risk aversion** $\overline{}$
	- **Controlled for**
- Students as subjects $\overline{\sum}$
	- Dyer, Kagel, Levin, 1989; Potters van Winden, 2000; Davis and Holt, 1993; Ball and Cech, 1996
- Infinitely repeated game $\sum_{i=1}^{n}$

Parameterization 2

High Demand (h)

Imperfect Public Monitoring

