Equilibrium Price Dynamics in Perishable Goods Markets: The Case of Secondary Markets for Major League Baseball Tickets

Andrew Sweeting

Duke University

November 2008

Introduction

- aim: describe equilibrium pricing patterns and test theories of equilibrium pricing behavior in perishable goods markets
- event tickets are

Revenue Management Models of Dynamic Pricing of Perishable Goods

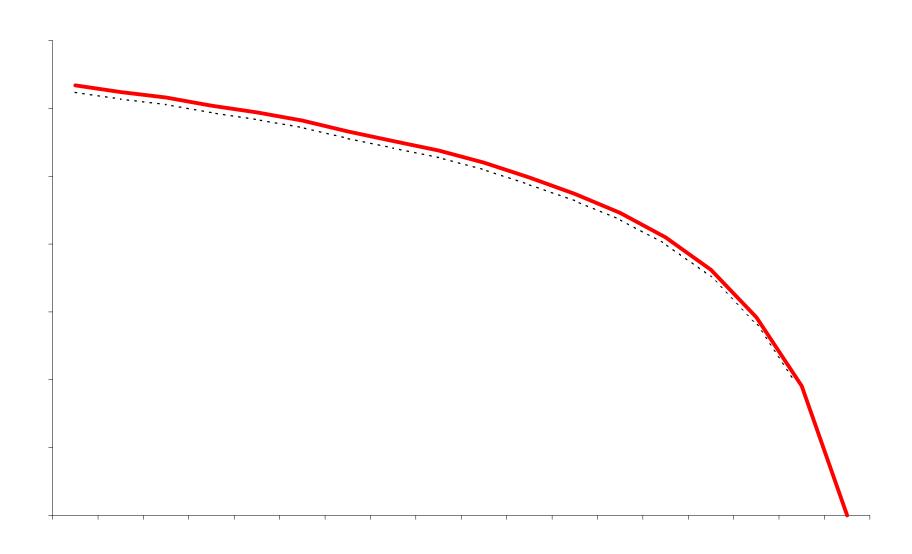
- examples: McAfee and te Velde (2006), Gallego and van Ryzin (1994)
- basic theoretical structure:
 - seller starts with a given inventory and continuously varies price (no commitment)
 - consumers arrive randomly, purchase at once or exit
 - demand parameters constant over time
 - market ends (inventory perishes) on a ...xed date
- optimal price depends on probability that a current sale prevents a future one because of a stock-out
 - lower inventory! higher prices
 - less time remaining! lower prices, as future selling opportunities disappear
- a "robust prediction" (McAfee and te Velde) is that expected prices should fall over time

Empirical Evidence and Motivation for Looking at Secondary Ticket Markets

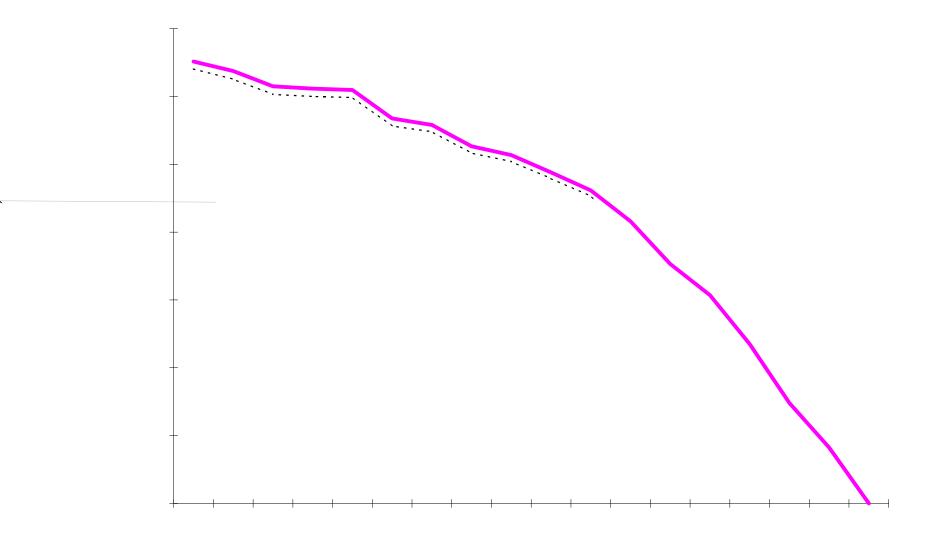
- little empirical work testing these models
- when declining price prediction has been tested (e.g., airlines by McAfee and te Velde), it has been rejected. Why?
 - consumer demand changes over time
 - commitment
- secondary event ticket markets have several nice features:
 - sellers are small and fairly anonymous, so commitment incentives should be small
 - most sellers oxering one unit (e.g., a pair of tix), so declining price prediction emerges unambiguously

What the Paper Does

- shows, using data from two large markets, that list and transaction prices decline by signi...cant amounts (20-50%) as the game approaches
- describes three theories for why prices decline:
 - RM explanation
 - residual demand becomes more elastic over time
 - 3


(Descriptive) Evidence of Price Declines


estimating equation:


```
Price or Log(Price) DTG ^{DTG} X^{LIST} LIST X^{SLR} SLR X^{FORM} FORM FES
```

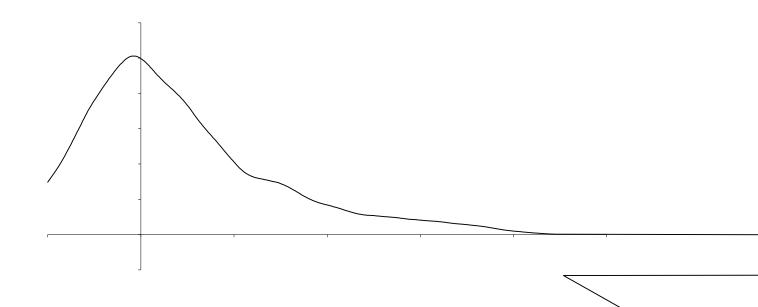
- measure of price:
 - buyer, seller
 - transaction, list
 - log, levels or relative to face value
- de...nition of ...xed exects, important to control for quality:

•

Structural Analysis of Price Setting

Testing the Changing Demand & Declining Opportunity Cost Explanations: Example Fixed Price Listings

whenever a seller lists a ticket he is solving


$$\max_{p_{st}} p_{st} Q_{st} \quad p_{st} \quad o_{st} \quad 1 \quad Q_{st} \quad p_{st}$$

where Q_{st} is the probability of sale and o_{st} is the opportunity cost of selling. If SOCs satis...ed

$$\begin{array}{ccc} p_{st} & o_{st} & \frac{Q_{st}}{Q_{st}} \\ \hline \widehat{o_{st}} & p_{st} & \frac{\widehat{Q_{st}}}{\widehat{Q_{st}}} \\ \hline \widehat{o_{st}} & p_{st} & \frac{\widehat{Q_{st}}}{\widehat{Q_{st}}} \\ \hline \end{array}$$

- estimate a parameterized probability of sale function (with varying elasticities)
- instrument (control function) for prices using factors a meeting opportunity costs (e.g., seller distance)

Figure 3
Implied Opportunity Costs
Pure Fixed Price Listings

(a) Counterfactuals for Fixed Price Model Relative Price Model

	Days Prior to Game					
	1-10	11-20	21-40	41 plus		
<u>Actual</u>						
Mean Price	53.58	60.93	65.81	69.44		
Median Price	40.63	49.50	54.20	58.50		
Counterfactual: dem	nand parameters s petition variables					
Mean Price	50.26	59.41	65.66	68.99		
Median Price	39.78	49.35	55.13	59.40		

(b) Counterfactuals for Fixed Price Model Log Price Model

	Days Prior to Game				
	1-10	11-20	21-40	41 plus	
<u>Actual</u>					
Mean Price	53.58	60.93	65.81	69.44	
Median Price	40.63	49.50	54.20	58.50	

Counterfactual: demand parameters same as 11-14 days prior to gamecompetition variables same as average 11-20 days before gameMean Price50.5858.3964.3369.40Median Price40.9549.3854.9559.89

Conclusion and Future Research Directions

- robust evidence that prices tend to decline in secondary ticket markets
- strong initial evidence that sellers cut prices because opportunity costs of selling decline as future selling opportunities disappear (because of perishability)
- early buying rational given product dixerentiation, plausible levels of search costs & risk aversion
- outstanding questions: