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Our Contribution

1 Generalize UPP to \GePP"

allow for non-pricing conduct and non-Nash equilibrium
generalize the diversion ratio
add an \end of accommodating reaction" term
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Our Contribution

1 Generalize UPP to \GePP"

allow for non-pricing conduct and non-Nash equilibrium
generalize the diversion ratio
add an \end of accommodating reaction" term

2 Formulate the \merger pass-through rate" necessary to
convert pricing pressure to price changes

an intuitive combination of pre- and post-merger pass-through

3 Combine price changes into an aggregate metric of the
changing consumer surplus

weight by quantities

�CS � � gT|{z}
GePP

� �|{z}
merger pass-through

� Q|{z}
quantity
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Prices as Strategies

Comparison to UPP and estimation of price changes are easier if
we think of �rms as setting prices

As long as the map from strategies to prices is invertible, this
is without loss of generality

Other �rms’ non-price setting behavior is incorporated into
the conjectures concerning their reactions

Cournot can be reformulated as a �rm setting prices and
conjecturing that other �rms will adjust their prices to keep
their quantities �xed

Again, the total derivative is dQ
dPi
� @Q

@Pi
+
�
@Q
@P�i

�T
@P�i

@Pi

The pre-merger �rst-order condition simpli�es to:

f �i (�) � �
�

dQi
dPi

T
�−1

Qi � (Pi �mci ) = 0

Ja�e and Weyl (2011) The First-Order Approach to Merger Analysis 5



Prices as Strategies

Comparison to UPP and estimation of price changes are easier if
we think of �rms as setting prices

As long as the map from strategies to prices is invertible, this
is without loss of generality

Other �rms’ non-price setting behavior is incorporated into
the conjectures concerning their reactions

Cournot can be reformulated as a �rm setting prices and
conjecturing that other �rms will adjust their prices to keep
their quantities �xed

Again, the total derivative is dQ
dPi
� @Q

@Pi
+
�
@Q
@P�i

�T
@P�i

@Pi

The pre-merger �rst-order condition simpli�es to:

f �i (�) � �
�

dQi
dPi

T
�−1

Qi � (Pi �mci ) = 0

Ja�e and Weyl (2011) The First-Order Approach to Merger Analysis 5



Generalized Pricing Pressure (GePP)

Post-merger, the merging partner j does not react:

dM holds �xed partner’s strategy dM Ai
dPi

= @Ai
@Pi

+ @Ai
@P�ij

@P�ij

@Pi

The diversion ratio matrix is DP
ij � �

�
dM Qi
dPi

−1
�T

dM Qj

dPi

T

The Generalized Pricing Pressure (GePP) is

gi � ~Dij (Pj �MCj )| {z }
generalized UPP

�

24 dMQi

dPi

−1
!T

�
�

dQi

dPi

−1�T
35Qi| {z }

end of accommodating reactions

Note: The two changes (from UPP) go in opposite directions
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Generalized Pricing Pressure (GePP)

Post-merger, the merging partner j does not react:

dM holds �xed partner’s strategy dM Ai
dPi



Examples

Nash-in-Prices

In single-product case, exactly UPP
In multi-product case, diversion by matrices

Nash-in-Quantities

Only works for di�erentiated products

gi (P) =�
@Qj

@Pi
� @Qj

@P�ij

@Q�ij

@P�ij

−1 @Q�ij

@Pi

@Qi
@Pi
� @Qi

@P�ij

@Q−ij

@P−ij

−1@Q−ij

@Pi| {z }
Price Response| {z }

Diversion Ratio

(Pj �mcj )

�

0@ 1

@Qi
@Pi
� @Qi

@P�ij

@Q�ij

@P�ij

−1 @Q�ij

@Pi

� 1

@Qi
@Pi
� @Qi

@P�i

@Q�i

@P�i

−1 @Q�i

@Pi

1AQi

| {z }
End of Accommodating Reactions
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Pass-through

GePP, like UPP, only gives pricing pressure, not price changes

Pass-through is the rate at which changes in marginal cost are
passed through to prices

It’s intuitive to think that pass-through rates should be used
to convert pricing pressure into price changes

Disagreement in the literature over which pass-through rate
choice

Froeb, Tschantza, Werden (2005) claim post-merger
Farrell and Shapiro (2010) claim pre-merger
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We use a Taylor expansion to �nd the relevant pass-through rate

Even though mergers are a discrete change in industry
structure, we can use standard comparative static approaches
as long as the changes in incentives are small

Requires that the �rst-order conditions be invertible

Theorem

If f is the vector �rst-order conditions and g is the vector of

GePPs and (f + g) and
�
@f (P)
@P + @g(P)

@P

�
are invertible, then,

�P � �
�
@f (P)

@P
+
@g(P)

@P

�−1 ����
P0| {z }

merger pass-through

g(P0)| {z }
pricing pressure

:
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Pre-, post- and merger pass-through

Pre-merger: �← = �
�
@f
@P

�−1

Post-merger: �→ = �
�
@f
@P + @g

@P

�−1
~D

where ~D �

24 I �~D12 0

�~D21 I 0
0 0 I

35
Merger: � = �

�
@f
@P + @g

@P

�−1

Pre-merger cost impacts



Identifying merger pass-through

We can’t directly observe merger pass-through...two approaches:

1 Exact identi�cation

Two merging �rms

Use Slutsky symmetry to identify w/ Bertrand or Cournot

With more �rms, need stronger assumptions

Weyl-Fabinger horizontality or independent discrete choice

2 Approximating merger pass-through with pre-merger
pass-through

If g is small

Then likely that @g
@P

also small =) � � � 
Otherwise \smallness" not very robust
If g is small because D is small =) � � �!

If merger small, e�ect on pass-through are likely to also be
small
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Approximation Error and Validity

The error term 1
2
@2h�1





Welfare as a common currency

In the end, we care about Welfare

Consumer Surplus

�PTQ

Laspeyres, Paasche, Marshall-Edgeworth or Fisher

Normalize by value of trade for unit-free measure

�PTQ=PTQ

Social Surplus

�DWL � (P �mc)T�Q � (P �mc)T
�
@Q
@P
d�P
�
:

Ignores externalities and any other out-of-market a�ects

In addition to being what we care about, these

Aggregate multiple price changes (possibly with mixed signs)

Allow comparison to other e�ects
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Comparison to merger simulation

\Approximateness"

With MS’s assumptions, we would get the same results
Functional forms tie down the higher order Taylor terms

But they also tie down pass-through rates
We think it’s better to try to measure these empirically



Simplifying the formula for applications

The more general, robust formula requires more inputs

Many possible simplifying assumptions

1 Pass-through
2 Firm heterogeneity
3 Conduct: Bertrand, Cournot, consistent

Bertrand conduct, zero cross-pass-through, and unit own
pass-through give UPPT � Q
Our value added diminishes, but useful for robustness checks
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Conclusion

This paper:

1 Generalizes UPP

2 Converts GePP to price changes and welfare e�ects

3 Extends comparative statics approaches to seemingly discrete
changes

Future Directions:

1 How accurate is the �rst-order approximation and when?

2 Add more richness: dynamics, products, quality choice

3 Best ways to simplify the formula in salient cases

4 Empirical work on pass-through
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