The First-Order Approach to Merger Analysis

Sonia Ja e (joint work with E. Glen Weyl)

Harvard University

Fourth Annual Federal Trade Commission Microeconomics Conference

November 3, 2011

Generalize UPP to \GePP"

- allow for non-pricing conduct and non-Nash equilibrium
- generalize the diversion ratio
- add an \end of accommodating reaction" term

Generalize UPP to \GePP"

- allow for non-pricing conduct and non-Nash equilibrium
- generalize the diversion ratio
- add an \end of accommodating reaction" term

Formulate the \merger pa.erg99o. 9776 Tf 38hrou 97gh.erg99 g e"ash

- Generalize UPP to \GePP"
 - allow for non-pricing conduct and non-Nash equilibrium

Generalize UPP to \GePP"

- allow for non-pricing conduct and non-Nash equilibrium
- generalize the diversion ratio
- add an \end of accommodating reaction" term
- Formulate the \merger pass-through rate" necessary to convert pricing pressure to price changes
 - an intuitive combination of pre- and post-merger pass-through
- Combine price changes into an aggregate metric of the changing consumer surplus
 - weight by quantities

$$CS \qquad \begin{array}{c} q^{\mathsf{T}} & Q \\ |\{\mathsf{Z}\} & |\{\mathsf{Z}\} & |\{\mathsf{Z}\} \\ \text{GePP merger pass-through quantity} \end{array}$$

Comparison to UPP and estimation of price changes are easier if we think of rms as setting prices

- As long as the map from strategies to prices is invertible, this is without loss of generality
- Other rms' non-price setting behavior is incorporated into the conjectures concerning their reactions
 - Cournot can be reformulated as a rm setting prices and conjecturing that other rms will adjust their prices to keep their quantities xed
 - Again, the total derivative is $\frac{dQ}{dP_i} = \frac{@Q}{@P_i} + \frac{@Q}{@P_i} = \frac{1}{@P_i} \frac{@P_i}{@P_i}$

Comparison to UPP and estimation of price changes are easier if we think of rms as setting prices

- As long as the map from strategies to prices is invertible, this is without loss of generality
- Other rms' non-price setting behavior is incorporated into the conjectures concerning their reactions
 - Cournot can be reformulated as a rm setting prices and conjecturing that other rms will adjust their prices to keep their quantities xed

• Again, the total derivative is
$$\frac{dQ}{dP_i} = \frac{@Q}{@P_i} + \frac{@Q}{@P_i} + \frac{@Q}{@P_i}$$

The pre-merger rst-order condition simpli es to:

$$f_i$$
 () $\frac{dQ_i}{dP_i}^{\top} = 0$ $(P_i \quad mc_i) = 0$

Generalized Pricing Pressure (GePP)

Post-merger, the merging partner *j* does not react:

- d^M holds xed partner's strategy $\frac{d^M A_i}{dP_i} = \frac{@A_i}{@P_i} + \frac{@A_i}{@P_{ij}} \frac{@P_{ij}}{@P_i}$
- The diversion ratio matrix is D_{ij}^P

 $\frac{d^{M}Q_{i}}{dP_{i}}^{-1} \xrightarrow{\mathsf{T}} \frac{d^{M}Q_{j}}{dP_{i}}^{\mathsf{T}}$

Generalized Pricing Pressure (GePP)

Post-merger, the merging partner *j* does not react:

• d^M holds xed partner's strategy $\frac{d^M A_i}{dP_i}$

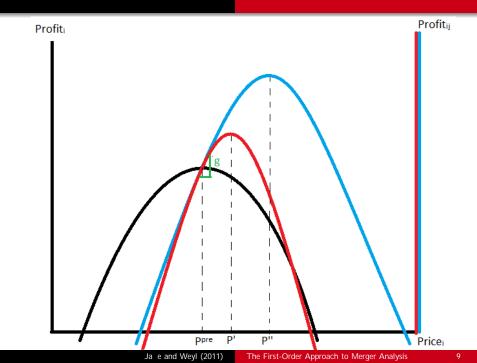
Examples

Nash-in-Prices

- In single-product case, exactly UPP
- In multi-product case, diversion by matrices

GePP, like UPP, only gives pricing pressure, not price changes

- *Pass-through* is the rate at which changes in marginal cost are passed through to prices
- It's intuitive to think that pass-through rates should be used to convert pricing pressure into price changes
- Disagreement in the literature over which pass-through rate choice
 - Froeb, Tschantza, Werden (2005) claim post-merger
 - Farrell and Shapiro (2010) claim pre-merger



We use a Taylor expansion to nd the relevant pass-through rate

- Even though mergers are a discrete change in industry structure, we can use standard comparative static approaches as long as the changes in incentives are small
- Requires that the rst-order conditions be invertible

Theorem

If f is the vector rst-order conditions and g is the vector of GePPs and (f + g) and $\frac{@f(P)}{@P} + \frac{@g(P)}{@P}$ are invertible, then,

$$P \qquad \frac{@f(P)}{@P} + \frac{@g(P)}{[z]} \stackrel{-1}{=} g(P^0) :$$

$$|\underbrace{=}_{\{z]} \frac{g(P^0)}{[z]} :$$
merger pass-through

Pre-, post- and merger pass-through

- Pre-merger: $\leftarrow = \frac{@f}{@P}^{-1}$ • Post-merger: $\rightarrow = \frac{@f}{@P} + \frac{@g}{@P}^{-1} D$ • where $D = 4 \frac{D_{21}}{D_{21}} \frac{1}{I} = 0 \frac{5}{0}$ -1
- Merger: = $\frac{@f}{@P} + \frac{@g}{@P}$ -1
 - Pre-merger cost impacts

Identifying merger pass-through

We can't directly observe merger pass-through...two approaches:

- Exact identi cation
 - Two merging rms
 - Use Slutsky symmetry to identify w/ Bertrand or Cournot
 - With more rms, need stronger assumptions
 - Weyl-Fabinger horizontality or independent discrete choice
- Approximating merger pass-through with pre-merger pass-through
 - If g is small
 - Then likely that $\frac{@g}{@P}$ also small =)
 - Otherwise \smallness" not very robust
 - If g is small because D is small =)
 - If merger small, e ect on pass-through are likely to also be small

Approximation Error and Validity

The error term
$$\frac{1}{2} e^{2h}$$

Welfare as a common currency

In the end, we care about Welfare

- Consumer Surplus
 - *P*^T*Q*
 - Laspeyres, Paasche, Marshall-Edgeworth or Fisher
 - Normalize by value of trade for unit-free measure

 $P^{\mathsf{T}}Q = P^{\mathsf{T}}Q$

- Social Surplus
 - *DWL* (*P* mc)[⊤] *Q* (*P* mc)[⊤] [@]*Q* ^{*d*}*P* :
 - Ignores externalities and any other out-of-market a ects

\Approximateness"

- With MS's assumptions, we would get the same results
 - Functional forms tie down the higher order Taylor terms
 - But they also tie down pass-through rates
 - We think it's better to try to measure these empirically
 - Our approach maksuren892es5ithroachterms

Simplifying the formula for applications

The more general, robust formula requires more inputs

- Many possible simplifying assumptions
 - Pass-through
 - Ø Firm heterogeneity
 - Onduct: Bertrand, Cournot, consistent
- Bertrand conduct, zero cross-pass-through, and unit own pass-through give $\mathsf{UPP}^\top\ \mathcal{Q}$
- Our value added diminishes, but useful for robustness checks

This paper:

- Generalizes UPP
- Onverts GePP to price changes and welfare e ects
- Extends comparative statics approaches to seemingly discrete changes

This paper:

- Generalizes UPP
- Onverts GePP to price changes and welfare e ects
- Extends comparative statics approaches to seemingly discrete changes

Future Directions:

- How accurate is the rst-order approximation and when?
- Add more richness: dynamics, products, quality choice
- Best ways to simplify the formula in salient cases
- Empirical work on pass-through