- Two groups of agents interact through a platform.
- Each group cares about the presence of agents on the other side, and thus the decisions of agents on one side a¤ect the utility of agents on the other side.
- Platforms account for these cross-group externalities in making strategic decisions (e.g. setting prices).

- Payment systems
 - Merchants and consumers interact through credit cards.
- Video game systems
 - Game developers and game players interact through video consoles.
- Advertising in newspapers/magazines/websites
 - Advertisers and readers interact through media platforms.

・ 日 ト ・ 画 ト ・ 画 ト ・ 目 ・ う へ ()・

- I show how to estimate agents' demand (preferences) for platforms using data on (two) membership prices, the number of agents on platforms, and other platform attributes.
 - The presence of agents from the other side is an important platform attribute and this variable is an endogenous variable.
- Given demand estimates, one can recover platforms' costs of serving agents and measure their markups (market power).
 - Price elasticity does not have a closed form because of the so-called feedback loop exect.
 - There are two demand equations, one for each group, and both should be used simultaneously to recover the costs.

- Numerous theory papers on two-sided markets.
 - The most cited ones are Rochet and Tirole (*JEEA* 2003; *RAND* 2006) and Armstrong (*RAND* 2006).
 - My paper is closely related to Armstrong (2006).
- Relatively few empirical papers but the number is growing fast.
 - Rysman (*RESTUDS* 2004) on the Yellow Page market zero price for consumers.
 - Argentesi and Filistrucchi (JAE 2007) on the Italian newspaper market
 - consumers do not care about advertising.

() >

• Assuming $\#_{ij}$ is distributed the type I extreme value, platform j's market shares are

$$S_{j}^{A}(p^{A}, s^{B}, x^{A}|W) = \frac{\exp(m_{j}^{A} + a^{A}s_{j}^{B} - l^{A}p_{j}^{A} + x_{j}^{A})}{1 + a_{m=1}^{J}\exp(m_{m}^{A} + a^{A}s_{m}^{B} - l^{A}p_{m}^{A} + x_{m}^{A})}$$
$$S_{j}^{B}(p^{A}, s^{B}, x^{A}|W) = \frac{\exp(m_{j}^{B} + a^{B}s_{j}^{A} - l^{B}p_{j}^{B} + x_{j}^{B})}{1 + a_{m=1}^{J}\exp(m_{m}^{B} + a^{B}s_{m}^{A} - l^{B}p_{m}^{B} + x_{m}^{B})}$$

- 《曰》 《聞》 《臣》 《臣》 三臣 - - - 오

- I follow Armstrong (2006) to model group B agents' membership decision. I assume that she makes a decision to join one platform independently from her decision to join another. She joins a platform as long as its net bene...t is positive.
- Given the ...xed membership fee, say p_j^B , a type- a_i^B agent will join platform j if

$$a_i^B w_j n_j^A \ge p_j^B.$$

• Suppose platforms only know the distribution of a_i^B . Since each group B agent is ex ante identical, a platform will charge a single price p_j^B and the number of group B agents joining platform *j* is determined by

$$S_j^B\left(\mathbf{p}^B, \mathbf{s}^A | \mathbf{W}\right) = \left(1 - F\left(\frac{p_j^B}{w_j n_j^A} | q\right)\right)$$

Computing price elasticities

• Because of the cross-group externalities

$$\frac{\P S_{j}^{A}\left(\mathsf{p}^{A},\mathsf{s}^{B},\mathsf{x}^{A}|\mathsf{W}\right)}{\P p_{k}^{A}}\neq\frac{\P s_{j}^{A}}{\P p_{k}^{A}}$$

- This makes elasticity computation an implicit function problem. Treating share equations as an implicit function, the elasticity can be computed using the Implicit Function Theorem.
- For example, in the competitive bottleneck model,

$$F_{j}^{A}(\mathbf{s},\mathbf{p}) \equiv \frac{\exp\left(m_{j}^{A}+a^{A}s_{j}^{B}M^{B}-l^{A}p_{j}^{A}+x_{j}^{A}\right)}{1+a_{m=1}^{J}\exp\left(m_{m}^{A}+a^{A}s_{m}^{B}M^{B}-l^{A}p_{m}^{A}+x_{m}^{A}\right)}-s_{j}^{A}=0$$

$$F_{j}^{B}(\mathbf{s},\mathbf{p}) \equiv \left(1-G\left(\frac{p_{j}^{B}}{w_{j}s_{j}^{A}M^{A}}|q\right)\right)-s_{j}^{B}=0$$

for j = 1, ..., J. where s are endogenous variables and p are control variables.

Song (University of Rochester)

Two-sided Markets

Estimation: Two-sided Single-home Model

• With observed market shares treated as one of equilibria, I estimate the following system of equations

$$\log \left(s_{j}^{A}\right) - \log \left(s_{0}^{A}\right) = m_{j}^{A} + a^{A}s_{j}^{B} - l^{A}p_{j}^{A} + x_{j}^{A}$$
$$\log \left(s_{j}^{B}\right) - \log \left(s_{0}^{B}\right) = m_{j}^{B} + a^{B}s_{j}^{A} - l^{B}p_{j}^{B} + x_{j}^{B}$$

j = 1, ..., J. The model parameters are $W = \left(m_j^A, m_j^B, I^A, I^B, a^A, a^B\right)$.

- The demand-side model can be consistently estimated by the GMM with IVs.
 - In addition to the price variable, the other group's share variable is also an endogenous variable.
 - This variables is correlated with (x_j^A, x_j^B) for all *js* because of the feedback loop.

Estimation: Competitive Bottleneck Model

• For group A agents we have the following equation to estimate

$$\log\left(s_{j}^{\mathcal{A}}\right) - \log\left(s_{0}^{\mathcal{A}}\right) = m_{j}^{\mathcal{A}} + a^{\mathcal{A}}n_{j}^{\mathcal{B}} - I^{\mathcal{A}}p_{j}^{\mathcal{A}} + x_{j}^{\mathcal{A}}$$

• For group B agents w_i is recovered by inverting following equation to es

Recovering marginal costs and markup

 Demand estimates are used to recover platforms' costs using the pro...t maximization condition. Assuming the constant marginal cost, platform j's pro...t is

$$p_j = \left(p_j^A - c_j^A\right)s_j^A M_A + \left(p_j^B - c_j^B\right)s_j^B M_B$$

where M_A and M_B denote the total number of agents for each group respectively.

• The pro...t maximizing ...rst order conditions are

$$\frac{\P p_j}{\P p_j^A} = s_j^A M_A + \left(p_j^A - c_j^A\right) \frac{\P s_j^A}{\P p_j^A} M_A + \left(p_j^B - c_j^B\right) \frac{\P s_j^B}{\P p_j^A} M_B = 0$$

$$\frac{\P p_j}{\P p_j^B} = s_j^B M_B + \left(p_j^B - c_j^B\right) \frac{\P s_j^B}{\P p_j^B} M_B + \left(p_j^A - c_j^A\right) \frac{\P s_j^A}{\P p_j^B} M_A = 0$$

14 / 21

- The two marginal costs should be searched simultaneously. This search process involves numerical computation of the own- and cross-price elasticities as derivatives of the implicit function for each set of trial values.
- Platform's markup from one group is a function of its markup from the other group.

- Advertising in magazines. Magazines serve readers on one side and advertisers on the other side.
- Panel data (1992 to 2010) on TV magazines in Germany.
- Quarterly information on copy prices, advertising rates, advertising pages, content pages, and circulation are collected from a non-pro...t public institution equivalent to the US Audit Bureau of Circulation.
- Finding IVs from di¤erent magazine segments (Kaiser and Song, IJIO 2009).

• • • • •

Estimation results

	Table 5:	Demand	Estimation	Results
--	----------	--------	------------	---------

Wartal	aras se	016	- 811.t 11	(-04
.111* R 619)	eaders Co	onstant	-7.250* (0.235)	-5.604* (႐.640)	-5 (႐
وتغيري متتبين	Copy Price	-0.017 (0.012)	-0.135* (0.033)	-0.155* (0.032)	
0.204*		Ads	Page (<u>0.208</u>
Page 0.062* 		0.060* 			ntent
Constant	()-623	0,74\$* (<u>()=###))_</u>	0 01 <u>0</u> *	Advert	
Content.	Page			10²	

Song (University of Rochester)

2011 FTC Micro Conference

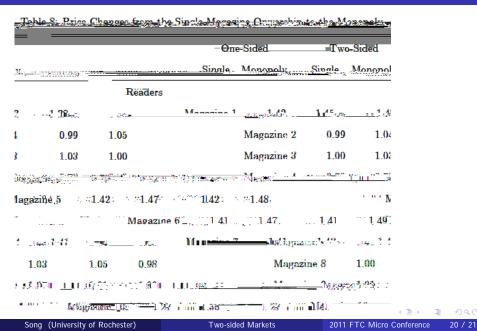
∃ ► < ∃ ►</p>

18 / 21

2

Magazine (Platform) markup

-	Tabla '	7. Mocorine Marley	Postal Approximation	0.65.4251
Two Sided .	a at an an early a set		One Sided	·
	kup	. Cost Markun	<u> Washim</u> ,	arbeta
<i>(</i>	· ····································	$\max_{p \in \mathcal{P}} p \in \mathcal{P}$ $\max_{p \in \mathcal{P}} p \in \mathcal{P}$	$\cdots = m \mathfrak{m}^{n} \cdot (p^{(m_{m},m_{m})}) \cdot (p^{(m_{m},m_{m})})$	(n
Roedese oon Medie		1	3,30	and all former and the and
0.78	4.23 -3.15	-2.58	Mean	0.29 0.79
	and the second	Inter the second second		
0.949 (1.9489)	iner in the second	<u></u>	<u>1. 1. 18</u>	
<u></u>	<u>80 </u>	Advartine	<u></u>	<u></u>
and a state of the state of the	Mr. 1.021	A1, 140		ቅሐ (መንግስ የባ 🖉 🛶
<u>£</u> ?			<u> 200% QU - 500</u>	<u> 5.469 0</u>
<u> Kara</u> tan		0 <u>. 282 og</u> om 268 <u></u>	and a contract of a contract o	ere <mark>ny n</mark> y nasay


Song (University of Rochester)

∃ ► < ∃ ►</p>

19 / 21

2

Merger Analysis

- My structural model has two key features of the two-sided market.
 - Both groups care about the presence of the other group, so the cross-group externalities are present on both sides.
 - Platforms set di¤erent prices for each group to maximize joint pro...ts from both sides.
- The empirical results show that most magazines set copy prices below marginal costs to increase the reader basmgTRs.28(y)(ma)28(r33(the)-3