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Overview: Applications

Results apply/extend a variety of models/results in IO, behavioral
economics, and game theory

Cover all standard contests and auctions, war of attrition, & all-pay
auction
More exotic auctions and contests
Innovation contests with spillovers
Pricing games
Price matching policies
Behavioral economics (inequality aversion, loss aversion, regret,
reference pricing)
Evolutionary equilibria (ESS)
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Model and Notation

Players: i 2 f1, 2g
Actions (bids, prices, e¤ort, etc.): xi 2 A = [0,∞)

Payo¤s (coin-áip tie-breaking rule suppressed):

ui (xi , xj ) =

�
v � βxi � δxj if xi > xj

�γ� αxi � θxj if xi < xj

v � 0

V � v + γ > 0

Γ: An arbitrary game with this structure.

η � α + θ � β� δ

x�: Symmetric pure-strategy (Nash) equilibrium

F � (x): Symmetric (non-degenerate) mixed-strategy equilibrium
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Proposition 1: Characterization of Symmetric
Pure-Strategy Equilibria

Γ has a symmetric pure-strategy Nash equilibrium if and only if the
following three conditions jointly hold:

(i) β � 0

(ii) α � 0



Proposition 2: Characterization of Symmetric
Mixed-Strategy Equilibria

Γ has a nondegenerate symmetric mixed-strategy equilibrium if and only if
one of the following three sets of conditions holds:

(i) β > 0 and α > 0; or

(ii) β = 0, α > 0 and either ηθ = 0 or η < α; or

(iii) β = 0, α < 0 and either α < η < 0 or η < θ = 0.

In cases (i) and (ii) the equilibrium is unique within the class of
symmetric equilibria (pure or mixed).

In case (iii) there exists a continuum of nondegenerate symmetric
mixed-strategy equilibria, as well as a unique symmetric pure-strategy
equilibrium (given in Proposition 1).
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Proposition2: Characterizationof SymmetricMixed-StrategyEquilibria(Continued)The nondegenerate symmetric mixed strategy equilibria are atomless anddescribed by the distribution function F�(w)on[m�,u�),where

F�(w)= 8
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Proposition 2: Characterization of Symmetric
Mixed-Strategy Equilibria (Continued)

[m�, u�) is the interval deÖned by the lower bound

m� =

(
0 if α > 0

m0 2
�
�V

η ,∞
�

if α < 0
,

and upper bound

u� =

8>>>>>>>><>>>>>>>>:

�V
η if α > 0; β = 0; η < 0

V
η

�
(α/β)

η
α�β � 1

�
if α > 0; β > 0; α 6= β; η 6= 0

V
η (exp (η/α)� 1) if α = β > 0; η 6= 0
V

α�β ln α
β if α > 0; β > 0; α 6= β; η = 0

V /α if α > 0; β > 0; α = β; η = 0
∞ if otherwise
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Proposition 3: Summary Characterization

The symmetric equilibria to Γ are characterized as follows:

(a) The unique symmetric equilibrium is in pure strategies if and only if
one of the following three conditions holds (i) β > 0, α � 0, and
η < 0; (ii) β = 0, α = 0, and η < 0; or (iii) β = 0, η � α < 0, and
θ 6= 0;

(b) The unique symmetric equilibrium is in nondegenerate mixed
strategies if and only one of the following two conditions holds: (i)
β > 0 and α > 0; or (ii) β = 0, α > 0 and either ηθ = 0 or η < α;

(c) There is a unique symmetric pure-strategy equilibrium and a
continuum of nondegenerate symmetric mixed-strategy equilibria if
and only if β = 0, α < 0 and either α < η < 0 or η < θ = 0;

(d) If none of the conditions in (a) through (c) hold, Γ does not have a
symmetric equilibrium (either pure or mixed).
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Example: Partnership Dissolution (The Self-Auction)

Two partners wish to dissolve a partnership each values at v > 0.

Submit bids simultaneously; high bidder pays other partner her bid to
gain ownership:

ui (xi , xj ) =

�
v � xi if xi > xj

xjd[(j)]TJ/F.9/F61 7.97 Tf 5.029 -1.687 561  /F.9/F61 7<367 Tf 6.472 1.687 Td[(>)]TJ/F61 10.909 Tf 12.003 0 Td[(x)]TJ/F61 7.97 T9 Tf 12.003 0 Td[(0127 cm
0
1 0 0 1 10.906 201.462 cm
0 g 0 G
1 0 0 1 11.222 0 cm
0.2 0.2 0.7 rg 0.2 01992 0.7 RG
q
1 0 0 1 0 0.2 cm
/Fm4 Do
Q
1 0 0 1 5.138 0 cm
0 g 0 G
0127 cm
0
1 0 1 -64.266 -201.462 85(0127 cm
061 7G97 Tf 5.029 -1.687 (at3v)]TJ/F7i1(e)-1(rtn)1over(other)-dltaneous1(my3(d)1(P(otro33409 Tsitioto)]TJ 1,33(p)1ubmit)3(otce gTJ/F.d868 1.687 Td[6.31)]TJ/F7b97 Tf 5.029 -1.687 002197 Tt G
=909 Tf 13.3 -8.595 Td[(=)]]TJ/F63 11.367 T7.029 -1.687 (a10)]]TJ/F6q97 Tf 5.029 -1.687 Td[747 Tt G
=909 Tf7 Tf 9.377 0 Td[(>)]TJ/F23197 Tf 5.029 -1.687 5.45)]TJ/F23,.367 T7.029 -1.687 2 m 2]TJ/F23g97 Tf 5.029 -1.687 009(v)]TJ/F6= gTJ/F.d868 1.687 Tdd[(=)]]TJ/F6a97 Tf 5.029 -1.687 00063)]TJ/F6= gTJ/F.d868 1.687 Tdd[(47 Tt G
d97 Tf 5.029 -1.687 Td2997 Tt G
=909 Tf7 Tf 9.377 0 Td[(>)]TJ/F23097 Tf 5.029 -1.687 5.45)]TJ/F23,.367 T7 Tf 9.377 0 -29]TJ45333(bi)1(d)-3and gTJ/F.d868 1.687 T20 c8)]TJ/F23h97 Tf 5.029 -1.687 003147 Tt G
=909 Tf 13.3 -8.595 Td[(=)]]TJ/F63 11.367 T7 Tf 9.377 0 88 0.]]TJ/F6297 Tf 5.029 -1.687 5.45



Example: An Innovation Contest with Spillovers

Extend Dasguptaís (1986) all-pay auction innovation contest model
Each Örmís expenditure on R&D has beneÖcial spillover on rival

ui
�
xi , xj

�
=

�
v � xi � δxj if xi > xj
�xi � θxj if xι < xj

.

Greater beneÖt to winner than loser ( δ < θ < 0)

This is a Γ with δ < θ < 0, V = v > 0 = γ, and α = β = 1.
Since α� β = 0 and η > 0, Propositions 2 and 3 imply that the
unique symmetric equilibrium is

F � (x)



Example: Varian/Rosenthal Sales Models

L



Example: Inequality Aversion in a Job Tournament

Two workers compete in a winner-take-all fashion for a promotion



Example: Inequality Aversion in a Job Tournament
(Continued)

Propositions 1, 2 and 3 imply that the unique symmetric equilibrium
is in mixed strategies and given by

F � (x) =
1� a
a + b

�
exp

�
a + b

µ
x
�
� 1
�

on
�
0, µ

a+b





Example: Winner Regret in Auctions

First price auction with regret (Engelbrecht-Wiggans (1989),
Engelbrecht-Wiggans and Katok (2007), and Filiz-Ozbay and Ozbay
(2007)):

ui (x1, x2) =

�
v � xi � µ (xi � xj ) if xi > xj

0 if xi < xj
.

xi is player iís bid, v > 0 the value of the item, and µ > 0 a "regret"
parameter
Winner regret refers to the fact that the high bidder derives disutility
from leaving money on the table (the di¤erence between the winning
and losing bid). The payo¤s may be rewritten as

ui (x1, x2) =

�
v � (µ + 1) xi + µxj if xi > xj

0 if xi < xj

V = v , α = θ = 0, β = (1 + µ) > 0, δ = �µ, and η = �1.
Propositions 1 and 3 imply the unique symmetric equilibrium is
x� = v .
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Example: Auctions with Winner and Loser Regret

Can show both Örst and second order spillover e¤ects arise in this case

ui (x1, x2) =

�
v � xi (µ + 1) + µxj if xi > xj

�ρ (v � xj ) if xi < xj
.

This is a Γ with V = (1 + ρ) v , α = (1 + ρ) > 0, β = (1 + µ) > 0,
θ = �ρ, δ = �µ, and η = 0.

When ρ 6= µ, Propositions 2 and 3 imply the unique symmetric
equilibrium is

F �(x) =

�
1 + ρ

ρ� µ

��
1� exp

�
�ρ� µ

1 + ρ

x
v

��
on
h
0, 1�δ

δ�µ ln
�

1+ρ
1+µ

�i
When ρ = µ, Proposition 2 yields the standard all-pay auction form:
F � (x) = x/v , but EU� = �ρv/2.



Example: Evolutionary Stationary Strategies (ESS) in the
All-Pay Auction

One can also use Proposition 2 to Önd the unique symmetric ESS
equilibrium in the standard two-player all-pay auction
Finite agent ESS equilibrium of Scha¤er (1988) requires each player
maximize di¤erence in payo¤s:

ui (x1, x2) =

�
v � xi � (�xj ) if xi > xj

�xi � (v � xj ) if xi < xj

This is a Γ with payo¤s

ui (x1, x2) =
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