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ABSTRACT 

This paper models procurement auctions when suppliers face increasing costs. It is shown than an 

asymmetric equilibrium exists whereby one bidder bids different prices on each project in a series of 

simultaneous auctions, while its competitor bids the same price on each project. This existence of such an 

equilibrium may provide an explanation for observed bidding behavior in industries plausibly characterized by 

increasing costs. Further, it is shown that the price paid in simultaneously-held auctions will be less than the 

prices paid in sequentially-held auctions. Hence, the existence of an asymmetric equilibria e x i s t e n c e  





1. Introduction 

Government bodies often hold procurement auctions for multiple projects simultaneously. For 

example, state and local governments often hold simultaneous auctions for one-year contracts to supply milk, 

bread and other goods to proximate school districts and prisons. Multiple simultaneous auctions are common 

for contracts to build roads. If the firms bidding in the auction had constant marginal cost, the fact that 

multiple projects are bid upon simultaneously would be largely irrelevant. However, when the bidders face 

increasing costs of additional projects their bidding strategies become more complex. Moreover, under these 

circumstances there is a coordination problem: While total production cost may be minimized by an even 

distribution of projects across bidders, this allocation is unlikely to be achieved in a symmetric equilibrium. 

This paper presents a model of bidding for multiple projects under increasing cost. The model, I 

assumes that there are two bidders for two identical projects to be purchased by a buyer at auction.1 The two 

buyers have ex-ante identical costs (which may differ ex-post) and face increasing incremental production costs. 

Under these circumstances, the coordination problem discussed above may arise. For example, if a symmetric 

pure-strategy equilibrium emerges, small differences in realized cost will lead to one bidder winning both bids. 

The coordination problem can be ameliorated if bidders have asymmetric bidding strategies whereby 

one bidder has a common price across auctions, while the other bidder bids "high" sometimes and "low" 

sometimes.2 This will result in each bidder winning half the bids more frequently than in the symmetric 

equilibrium. Moreover, these bids represent a non cooperative equilibrium. If bidder j bids a common price 

on all projects, i's optimal (non cooperative) reaction is not to bid the same amount on all projects. Rather 

i will bid low enough to win some bids, but will not find it in its interest to bid below j everywhere. That is, 

by bidding 'low' on some projects, and 'high' on others, i guarantees itself some share of the projects, but is 

able to avoid the potential for winning so many bids that it loses money. Given this strategy by i, j finds that 

a strategy of bidding the same price everywhere serves to guarantee itself some share of the projects. 

1 Government procurement auctions frequently have only two participants. 

2 Figure 1 details the actual bids made by the two bidders in four simultaneous auctions. This paper in part 
represents an attempt to explain this behavior. 
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The existence of this non cooperative equilibrium is interesting for several reasons. First, it provides 

an explanation of actual bidding behavior is a series of simultaneous auctions (see Figure 1). Second, to the 

extent that this equilibrium emerges it explains why government agencies hold auctions simultaneously, even 

though sequential auctions mitigate the coordination problem. As I show, while sequential auctions lead to 

lower total production costs, they lead to higher winning bids. 

Finally, government agencies have begun to examine pricing behavior in order to spot "patterns" which 

suggest the existence of bid-rigging. This approach has been advocated by some economists as well. For 

example, Rothrock et al. (1978) suggest that descriptive statistics can help identify markets in which collusion 
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to trial,tO several Baltimore-area school districts 



(blmin,bi.,.J in figure 3. t2 By bidding b



Lemma 1: Let player j bid the same amount on the two projects, where j's bid is a linear function of ej (Hence, 

from i's perspective, j's bids are uniformly distributed on (1)i(o),bi(e)). Then i's optimal bids are 

(2) bt
j = (ct + e, + bi(e»/2 if e, > 2bi(O) - ct - bi(e) .::. ~ 

= bi(O) if ej!S. ~ 

(3) b2
1 = (Cz + e, + bi(e»/2 

Proof: See Appendix 

Note that ao2
j/0e1 = 1/2 and i'k>tj/Oej = 1/2 for ej > 2bi(O) - ct - bi(e), and over that range both bids 

are uniformly distnbuted, with b2are 



for e < 4.:k!3. 

Proof: See Appendix 

Lemmas 1 and 2 demonstrate that firms may have asymmetric strategies even when the firms have 

identical costs and act simultaneously. Given the bidding strategies in Lemmas 1 and 2, it is possible to explicit 

solve for the equilibrium strategies. The equilibrium bid functions are derived in PropoSition 1 and depicted 

in Figure 4. 

Proposition 1: If the auctions for two projects are held simultaneously, then an asymmetric Nash equilibrium 

exists of the form 

7. A ])l(ej ) = (Cz + ct)12 + 3e/8 + ep 

B. bL
i( ei) = (Cz + 3ct)/4 + 7e/16 + e/2 

c. bHi(e;) = (3Cz + ct)/4 + 7e/16 + efl 

D. e = I1c12 - e/8 

for 411C/9 < e .$. 4I1c!3. 

Proof: Lemma 1 shows that equations 2 and 3 are best-response functions for player i, while Lemma 2 shows 

that equation 5 is j's (Cz 



7. A hi(ej ) = (Cz + ct)f2 + 3e/8 + ep 

B. bL
i( e.) = (Cz + 3ct)/4 + 7e/16 + e/2 

C. bHI(ei) = (3Cz + ct)/4 + 7e/16 + e/2 

D. ~ = /lca - e/8. 

From the proof of Lemma 2, we know that a condition for this equilibrium to exist is that j does not 

have the incentive to bid below bLi(e) (and win both bids for all e.). The gain to j from shading is 

Using (7), this has the same sign as 
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again, it can be readily verified that this strategy yields higher profit than any alternative. 

The reason this equilibrium requires some degree of uncertainty follows from this heuristic. Under 

certainty, bidder i's optimal lower bid is arbitrarily close to j's bid, while j's optimal bid is arbitrarily close to 

i's higher bid. Hence, i's two bids are always arbitrarily close to one another, and there is no asymmetric 

equilibrium. For the asymmetric equilibrium to exist, there must be sufficient uncertainty (relative to the slope 

of the cost curves) so that each bidder may want to win both bids, given the other bidder's strategy. 

C. Sequential Auctions 

Given the potential coordination problem associated with simultaneous auctions, one might ask 

whether buyers might be better off holding the auctions sequentially, allowing the bidders to know whether 

they had won on the first bid prior to making a second bid.14 While this solution does mitigate the problem 

of inefficient production, it may result in higher prices for the buyers. To see why, consider the sequential 

equilibrium under certainty, (i&, where both bidder's costs are simply c1 for the one project and c1 + Cz for 

two). Then the firm which lost the first auction will bid Cz minus € and earn a rent of Cz - € - c1 in the second 
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money, while increasing its bid yields the same (0) profit as Cz + ej. Hence, bj = Cz + ej is weakly dominant.. 

These results imply that if A.c!2 > e, bidder j never wins the second auction, and the incremental 

return to losing the first auction is simply (Cz - c1 - e,). Thus, if e < A.c!2, there is a 'small' amount of 

uncertainty and, as in the certainty case, the first auction loser always wins the second auction. 

If the amount of uncertainty is not 'small' (i.e., if e > A.c(2) then i's optimal strategy will no longer 

be bj = Cz everywhere. To derive the Nash equilibrium for e > A.c!2, it is convenient to define ~ and e.15 

Definition 1: Let e be the maximum value of e, such that bj(e) = blO). 

Definition 2: Let ~ be the minimum value of ej such that Cz + ~ = bj(e). 

If bj is strictly increasing in ej for ej > e, then it follows that bj(ej) > bj(O) for all e, > e. That is, for 

ej < e i bids bj(O) and wins with certainty, while for e, > e i's bid is the unconstrained optimum. Similarly, 

if bj ( ej) is strictly increasing in ei, then whenever ej < ~ j's bid is sufficiently low that there is a positive 

probability it will win (Le., bi ej ) < bj(e) for all ej < ~). 

Proposition 3: For e > A.c!2, a second-auction equilibrium is 

(11) bj = (2c1 + Cz)(3 + (3ej + e)/4 for ej > e 

for ej < e 

(12) bj = (Ct + 2Cz)(3 + (ej + e)!2 

where e = e(3 + 4J9A.c, ~ = e - 2A.c(3. 

Proof: See Appendix. 

Equations (11) and (12) imply that for e < 2A.c(3, e is greater than e. Recalling definition 1, this 

15 These definitions hold for any arbitrary belief iG) has about j's (i's) bid function. That is, j takes e as given 
when choosing its optimal bid. Only in equilibrium does j's perception of i's bid function necessarily match 
i's actual bid function. 
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means that i bids (cl + 2ez)!3 + e!2 everywhere, and always wins the second auction. 

Propositions 2 and 3 detail the second period equilibrium. Given this equilibrium in the second 

auction, consider the first-auction equilibrium. In order to induce one of the bidders to win the first auction, 

the equilibrium in the first auction must result in returns which equal or exceed the return to losing. Let 1T'2(e.) 

represent the differential second auction profit associated 



. e 4ac if ek~-+--
3 9 

. e 4ac - 2ac if -+--:ul~e---
393 

Remark: The proof of this proposition involves sOlving a differential equation. This in turn requires a 

boundary condition - specifically, the bid associated with <; = e. I make the assumption that bl;(e) - c1 - e = 

1r2(e). That is, when a bidder has the highest possible costs, its first-auction return equals the expected second 

period return. 16 

Proof: See Appendix. 

The equilibrium in Proposition 5 exists when St:.c!3 > e > 2t:.c!3. Together, Propositions 4 and 5 

completely characterize the first-auction equilibrium in the sequential auction for St:.c!3 > e. The equilibria 

derived in those propositions are relevant in the range for which the asymmetric equilibrium exists in the 

simultaneous auction. Note that for St:.c!3 < e, a different symmetric equilibrium exists in the sequential 

auction. 

3. Comparison of Prices and Welfare Under Alternative Equilibria 

The previous section derived equilibrium under two alternative auction regimes; one in which auctions 

are held simultaneously, and one in which auctions are held sequentially. These two equilibrium will differ 

16 This assumption appears to be common in the auction literature (see McAfee and MacMillan (1987) or 
Riley and Samuelson (1981». The logic is readily apparent when the distribution of e has an atom at e. In 
that case, a symmetric equilibrium must be characterized by b(e) - c1 - e = 1r2(e), if 
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both in the prices charged and in the resulting production cost. The price comparison would naturally be of 

interest to a buyer with 



the range of lower bids where a second bid is made, is 



auction becomes more complicated. Nonetheless, the conclusion holds that prices are higher in the sequential 

equilibrium. The expressions in Table 1 represent the sum of the winning bids in the sequential equilibrium 

minus the sum in the asymmetric 



B. 



Table 2 compares the probability that one bidder wins both auctions under these two equilibria for 

alternative values of e « ac). Note that the probability of inefficient production is always lower for the 

sequential equilibrium, but the asymmetric equilibrium still results in probability well 



APPENDIX 

Proof of Lemma 1: To derive i's optimal bid functions, I first calculate the probabilities in equation 1. Since 

player j bids the same amount on both projects, and those bids are linear functions of ej (see Lemma 2), bi 

= bil = bi2, will be uniform as well. Without loss of generality let bi
l < biz. Then 

mfII(bJ(t),b1~ 

J j{b')dbJ =(min(b;.hJ(e» - bt)/(bJ(e) -bJ(O». 
b ' 1 

~bJ(;). b~ 

and P(L,W) = O. 

J j{b')dbJ=(max (bJ(e),bz)-bz)/(bJ(e)-bJ(O». 
,,; 

Using these probabilities bidder i's objective function is 

(AI) 'Tr = l/(bi(~) - bi(o» [(bl
i 

- ~ - ei) (bi2 - bi
I) + (bl

i + bZ
i 

- C1 - Cz - 2ei) (bj(~) - bi2)] + ).,1 (b\ - bi(O» + 

).,2 (bi(~) - biz) 

For values of ei which satisfy the two constraints, the first-order conditions are 

so that player i chooses bl
i and b2

i to satisfy 

(A4) bl
i = (cI + ei + bi(e))/2 

(AS) bz
i = (Cz + ej + bi(e»/2. 
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Note that if e, < 2bi(0) - ci - bi(e), A2 implies bl; < bi 



- bi(e) 1- , 

P(W,W) =P(b/<bi) = e:i f f(bjdb1 = _b:::...L(_e>_-_b;:.l. -I __ e_-_i_t -
e b' e bL(e)-bii> 

I 

e 

Since the two cases are equally likely, P(W,W) = 

In calculating P(W,L), the sign of b1
i- b2

i is again relevant. P(W,L) = p[b1
i < b1

i and b2
i < bi]. 

relationship between b1
i and b2

i
, j will win the first bid but lose the second if b1

i < bH
i < b2

i + lle/2 for e j > 

~. Similarly, for e. < ~ (assuming bAO) < b2i(~», j will win the first bid and lose the second if b1
i < bH', so 

that 

e-e 
bz' + Ilc -bl' 2 + i blAe)-b/ 

e blAi)-blAO) e e 

21 



ii) if bl
i < bZ

i , and bi < bj + ilcl2, P(W,L) = O. 

Since it is equally likely that bl
i < bZ

i or bl
i > bZ

i, P(W,L) equals 

e 

Symmetrically, P(L,W) equals 

e 

Given these probabilities, differentiating equation A6 with respect to b l
j and bz

j yields the following 

first-order conditions: 

A7) (bt
j 

- cI- ej)(-2) + (bz
j + ilcl2 - 2bl

j+ bH\e» + (bj- ci - ej) 

- (bl
j + b2

j 
- ci - Cz - 2ej ) + (2bL

i(t!) - bl
j 

- bh = 0 

A8) (blj - ci - ej ) + (bl
j + ilcl2 - 2bj + bHi(e» - 2(bj- ci - ej ) 

- (b t
J + bj - ci - Cz - 2ej ) + (2bL

i(t!) - bl
j 

- bz
j
) = 0 

(5) bl
j = (ci + Cz)/4 + ej2 + (bHi(e) + 2bL+ 2b(ci + 

+ ej2 + 
+ 

2b=  b j  (c(2b2e2e( 2 b 0  - 0 c ( 2 b 2 e 0  1 ( 2 b ) T j  0  T 5 3 6 . 7 6 d 2 2 2 8 4  T 6 4 . 8 o u t . 7 2  2 9 4 . 4 8 9 4 9  T m  ( 2 e ) T j  / T 1 _ 1  5 5 . 4 3 0  0 4  T 6 4 . 8 t o 4 8 - 0  6 . 7 3 9 0 . 4 9 0 4 2 5 0 2 b ( 2 b (2b2e(2b(2b

3

7

1

3

9

2

b

(
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For ej < ~, the probability that bj < bi is 

Where ft is the density of bi(ei) for ei < ~ and f2 is the density of blei) for ei >~. If i bids as in equation 11 

Since bi is distributed uniformly for t1 > ~, this can be written 

Hence, j's maximization becomes 

max IT} - T] 
=(b -c -e J(b.(e)-b J._ b ) 2 f' 



bJeJ 

Prob (b/<b)= f j(b)dbj 
bl 

Given j's strategy, bj is a linear function of ej so this probability becomes 

= b/.e~-bi 
bie~-biO) 

Hence, i's maximization can be rewritten 

and the first-order conditions for a maximum are 

AlO) bi = (c1 + ei + ble.»!2 + A 

and b i > bJ(O). 

Solving A9) and AlO) simultaneously yields 

A9') bj = (c1 + 2~)/3 + (ej + e)!2 

AlO') bi = (2c1 + ~)/3 + (3e j + e)/4 for e j > e 

Hence, the second-auction equilibrium is 

11) bi = (~ + ~)/3 + (3e j + e)/4 for e. .2:. e 

where e = e/3 + 4A.c!9, e = e - 2A.c/3 .. 

Proof of Proposition 5 

Given the second-auction equilibrium, player k (=i,j) maximizes 

where Tr/ (> 0) is the difference in second-auction profits between lOSing and winning the first auction. The 

probability term in the objective function can be rewritten 

24 



where B is k's bidding function. If a symmetric equilibrium is to hold in the first auction, bk = B(eJ, so that 

the Objective function can be rewritten 

Taking the derivative with respect to ~ yields the bidding function, 

A12) d1T/d~ = (F(~) - 1) (1 + Orr21:/0eJ 

To solve this first-order differential equation, note when ~ < 5fl.c/3, ~ < ~, so that equations (11) and 

(12) imply that 1T/(eJ = 

fl.c/3[2 - (~ - eJ/(~ - ~)] + (~ - ~ - ~)!2 for ~ < ~ 

2fl.c/3 + ~!2 - ~ for ~ < el: < ~ 

[fl.c/3 - (~ - eJ/4][3(~ - ~)!2 + 2 fl.c/3)]1~ for ~ >~. 

a) For ~ ~~, the solution to the differential equation in A12) equals 

- -e e 

f dlI f 2fl.C de dx= (F(x) -1)(1--_ ) dx 
e It 3e 

e 

=> A..13) n(e)-n(e)=f(F(x)-1) (1- 2fl._C)dx. 
e 3e 

The assumption that 1T(e) .=. [bk(e) - c1 - e - 1T2k(e)] = 0 means that equation A13) can be rewritten 

e 

A.14) n(e) = f(1-F(X» dx(l- 2fl._C). 
It 3e 

and using equation Al1, 

Since 1 - F(x) = (~ -x)/~, the integral on the right-hand side equals 

25 



~ 

j 2L\c 
(l-F(x»dt(I--::-) 

e 3e 
(I-F(e» 

t j{e-x)dx 
(i-e;/ 

using the fact that j(1-F(x»)dx--'-~--
e ie 

Hence, using the definitions of F(x) and Tr/, 

b) When ~ < e.:s. e, a-rrNae ... = 1, so that the right-hand side of equation AI2) equal zero. That is, the sum 

of the production cost and the 



A.. 17) 

Such a bid represents an equilibrium since no alternative bid yields higher profits (although for most 

e in this range, small increases or decreases from this strategy yield equal profits). 

c) For t\ < e, the solution to AI2) equals 

Using AI7 and the definition of '7T2(t\) 
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SOCIAL LOSS UNDER SEQUENTIAL AUCTION REGIME 
WHEN DELTA C = 1 
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Social Loss Under Asymmetric Simultaneous 
Auction Regime 
When Delta C = 1 

SOCIAL LOSS 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

o '",..... 
0.44 0.54 0.64 0.74 0.84 0.94 1.04 1.14 1.24 1.34 1.44 

EBAR 

FIGURE 6 

• 



Difference Between Bid 



PROBABILITY THAT ONE 
BIDDER WINS BOTH AUCTIONS 

e 

0.47 
0.52 
0.57 
0.62 
0.67 
0.72 
0.77 
0.82 
0.87 
0.92 
0.97 

1 

ASYMMETRIC 
SIMULTANEOUS 

EQUILIBRIUM 

(ilc = 1) 

TABLE 2 

1.6% 
1. 6% 
2.4% 
4.3% 
6.9% 
9.7% 

12.7% 
15.6% 
18.5% 
21. 3% 
24.0% 
26.6% 

SYMMETRIC 
SEQUENTIAL 
EQUILIBRIUM 

0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.1% 
0.4% 
1.0% 
1. 6% 
2.4% 
3.3% 
4.0% 



e 
---------

0.05 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 
0.4 

0.45 
0.5 

0.55 
0.6 

0.65 
0.7 

0.75 
0.8 

0.85 
0.9 

0.95 
1 

1.05 
1.1 

1.15 
1.2 

1.25 
1.3 

(6.c = 1.) 

COMPARISON OF EXPECTED SOCIAL LOSS 
UNDER ALTERNATIVE AUCTION REGIMES 

SIMULTANEOUS 
SEQUENTIAL ASYMMETRIC SYMMETRIC 

----------- -------------------------
0.000 0.000 0.492 

0.000 0.000 0.483 

0.000 0.000 0.475 

0.000 0.000 0.467 

0.000 0.000 0.458 

0.000 0.000 0.450 

0.000 0.000 0.442 

0.000 0.000 0.433 

0.000 0.000 0.425 

0.000 0.004 0.417 

0.000 0.012 0.408 

0.000 0.022 0.400 

0.000 0.034 0.392 

0.000 0.046 0.383 

0.001 0.058 0.375 

0.003 0.069 0.367 

0.004 0.078 0.358 

0.005 0.086 0.350 

0.007 0.093 0.342 

0.008 0.099 0.333 

0.008 0.103 0.325 

0.008 0.107 0.317 

0.008 0.109 0.309 

0.008 0.110 0.301 
0.008 0.111 0.293 

0.007 0.111 0.286 

TABLE 3 


