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I. Introduction 

 The usefulness of scanner data for analyzing the retail sector is widely seen as a “success 

story” by both academics and industry participants (Bucklin and Gupta 1999).  It remains an 

open question, however, whether aggregate-level data can reliably be used to estimate the 

demand for a set of products, or if store-level data is required.  Although previous research 

shows that demand estimates based on aggregate data are biased when stores are heterogeneous, 

only partial solutions to the aggregation bias problem have been developed thus far. 

 We propose a methodology for avoiding aggregation bias that allows inter-store 

heterogeneity to be explicitly controlled for with aggregate data.  This is accomplished by 

exploiting information regarding the distribution of store characteristics, information that is only 

partially utilized in extant aggregate demand models.  Our approach is highly practical since it 

relies solely on standard scanner data of the type produced by the major vendors, ACNielsen and 

Information Resources, Inc. (IRI). 

 Throughout this paper, “aggregate-level” refers to data where the sales from multiple 

stores are combined.  Examples of aggregate datasets include city-level data (e.g., all 

supermarkets in Chicago), and city-chain data (e.g., all of Jewel’s supermarkets in Chicago).1  

Researchers who lack access to store-level data must depend on these types of datasets to 

estimate the demand for a set of products.  Unfortunately, aggregate-level scanner datasets do not 

report the marketing-mix characteristics of products at each store, such as their price and 

promotional activity.  Unable to model inter-store heterogeneity with such data, researchers have 

employed a representative store paradigm where each consumer faces the average price and 

promotion level across all stores.  Recent examples include Nevo (2000a), Hausman and 

Leonard (2002), Cotterill and Samson (2002), and Perloff and Ward (2003).  Modeling aggregate 

                                                 
1 A confidentiality agreement with ACNielsen prohibits retailer names from being revealed.  This example 

does not indicate whether the dataset employed contains the Jewel supermarket chain in Chicago. 
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demand in this simplified manner comes at a high cost, however.  The aggregation bias literature 

demonstrates that when stores have heterogeneous marketing-mix strategies, the representative 

store model produces biased demand 
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univariate distribution of each product’s promotional activity, information that is reported in the 

scanner datasets produced by the two major vendors. 

 We demonstrate the advantages of our proposed methodology by estimating the demand 

for super-premium ice cream.  Using a random coefficients logit demand model, we not only 

show that our framework produces sensible results, but estimates that are measured more 

precisely than in the standard, representative store model.  In contrast, the traditional model 

produces implausible estimates due to aggregation bias.  These findings are corroborated by 

Monte Carlo analysis that shows our promotional disaggregation approach substantially 

outperforms the representative store framework. 

 The paper is organized as follows.  Section two reviews the methods that have previously 

been developed to avoid aggregation bias.  Section three presents a consumer demand model that 

accounts for marketing-mix heterogeneity across stores, and then uses this framework to estimate 

the demand for super-premium ice cream.  In section four, we employ Monte Carlo analysis to 

compare our disaggregated promotion framework to the standard representative store model.  

Section five concludes. 

II. Aggregation Bias 

Estimating demand with aggregate data often leads to model mis-specification, or 

“aggregation bias.”  This section reviews two previously developed solutions for avoiding 

aggregation bias.  Since this problem is widely known, we do not detail why aggregation bias 

occurs.  For a detailed consideration of this issue, Theil (1954) and Krishnamurthi et al. (1990) 

analyze the linear model; Lewbel (1992), Christen et al. (1997), and Chung and Kaiser (2000) 

analyze the constant elasticity model; and Allenby and Rossi (1991) and Krishnamurthi et al. 

(2000) analyze the logit model. 

Link (1995) argues that data aggregation across stores with heterogeneous marketing 

activity is the most significant source of bias in practical applications.  Link suggests that 

aggregation bias be avoided by employing data that has been aggregated across stores with 
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homogeneous marketing activity.2  However, even if one obtains data that is aggregated across 

stores where a product’s own promotions are homogenous, heterogeneity in the promotions of 

competing products may remain.  Thus, Link’s approach does not account for aggregation bias in 

cross-product effects.  A further limitation is that it requires demand for each product to be 

separately estimated, since it is possible to disaggregate by promotional activity for only one 

product at a time.  This prevents it from being applied to certain frameworks, such as the random 

coefficients logit model where the demand for each product is jointly estimated (Nevo 2000b). 

 Christen et al. (1997) propose a methodology to “de-bias” demand estimates based on 

aggregate data.  First, demand is estimated using simulated store-level data that has been 

aggregated across stores.  The average difference between the true and estimated parameters 

from the simulation is then added to the estimates from an empirical application, to de-bias the 

results.  It can be difficult to estimate the magnitude of aggregation bias reliably as one may have 

insufficient information to calibrate the simula
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Data 

 We utilize supermarket scanner data provided by ACNielsen for the super-premium ice 

cream category.  The dataset separately reports weekly sales for 14 city-chain combinations for 

the period December 1998 to June 2001 (132 weeks).  However, to avoid complications 

involving entry into certain geographic areas, only a subset of the data is used; we analyze the 

last 80 weeks of data for the 11 city-chain combinations where the same four brands comprise 

the entire category.  To comply with a confidentiality agreement with ACNielsen, they are 

referred to as Brand A, B, C, and D. 

 The data separately reports unit and dollar sales for four mutually exclusive levels of 

promotional activity Mm∈ , where M = {“No Promotion,” “Display Only,” “Feature Only,” 

“Feature & Display”}.  A “Feature” is a print advertisement, such as in a promotional circular, 

while a “Display” is a secondary sales location within a store used to draw special attention to a 

given product.  The demand specification presented below details the conditions under which 

consumer demand can be added up across the subset of stores where a product has a given type 

of promotional activity, so that it can be consistently estimated with aggregate data.  The 

required conditions are less restrictive than those needed to perform an equivalent aggregation 

exercise using a representative store model. 

 In the super-premium ice cream category each brand’s UPCs represent a different flavor, 

with a particular flavor rarely available for more than one brand (e.g., “Chunky Monkey” is 

available only for the Ben & Jerry’s brand).3  The large number of idiosyncratic flavors limits 

the usefulness of this characteristic for estimating substitution patterns.  Other meaningful 

characteristics are common across UPCs for a given brand; each brand’s UPCs share the same 

brand image and, within any given store, they are identically priced and promoted.  Below, we 

                                                 
3 In addition, UPCs vary by package size.  Most brands of super-premium ice cream are available only in 

pint-sized containers, however, with larger package sizes representing a small fraction of category sales.  We 
therefore omit them from the analysis by restricting the dataset to pint-sized cartons. 
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develop a product-level demand specification.  Nonetheless, since the control variables 

employed vary only by brand, this specification simplifies to a brand-level demand model. 

Disaggregated Promotion Model 

 The following details the random coefficients logit demand model employed in the 

empirical analysis.  In every time period t, each consumer i purchases that item which generates 

the highest utility.  The choices are the set of currently available products tJ  or the “outside 

good.”  We normalize the utility derived from purchasing the outside good to a mean utility of 

zero, titiU 00 ω= , where ti0ω  is i.i.d. Type I Extreme Value.  For the remaining choices, 

consumer i’s utility for product j during week t is determined by its promotional activity 
Mmijt ∈ , price ijtp , a set of product characteristics ijtX  that has an associated vector of 

random coefficients iν , a set of additional controls jtZ , and an i.i.d. error term ijtω  that is 

distributed Type I Extreme Value.4 

(3.1) ijtjtiijtijt
ijtmijtm

ijt ZXpU ωγνβμ ++++=  

Product characteristics ijtX  include a set of dummy variables for each brand, price ijtp , and 

dummy variables for “Display Only,” “Feature Only” and “Feature & Display.”  Control 
variables jtZ  consist of brand fixed effects for each city-chain combination, a fourth order time 

trend, the number of products availa

Z
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 The model accommodates heterogeneity in consumer preferences through random 

coefficients iν .  We assume iν  is mean-zero and i.i.d. Normally distributed with a block 

diagonal variance matrix ]
0

0
[

2

1
V

V
V = .  Denote the probability distribution function of iν  by 

);( Viνφ .  1V  corresponds to the brand dummy variables contained in ijtX (the fixed 

characteristics), while 2V  corresponds to the remaining price and promotion variables (the 

variable characteristics).  We place no restrictions on 1V  and 2V
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(3.3) ijtjtiitjt
itgjm

jt
itgjmitgjm

ijt ZgXpU ωγνβμ ++++= )(
)()()(

 

 Apart from heterogeneity in price and promotional activity, all stores are identical.  In 

addition, we assume each consumer is randomly matched to a store.  This allows us to integrate 

over the distribution of random coefficients iν  for the subset of consumers who visit a given 

store type g, even though aggregate scanner datasets contain no information regarding individual 

stores or consumers. 

 Each consumer i m 
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All variables in (3.5) that have a product j subscript are identical across products with the same 
brand b.  To simplify notation we therefore replace each j subscript with a jb  subscript.  

Equation (3.5) reduces to the following, where btN  denotes the number of products available in 

time t that are part of brand b’s product line. 
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 To account for our transformation from a product- to a brand-level demand model, we 

update the definition of store type g.  We now define g as the set of promotional activity across 

the four brands.  Since there are four brands and four types of promotional activity, G contains 
44  = 256 unique store types.  This simplification is possible since, as we discussed earlier, in the 

super-premium ice cream category each brand’s entire product line is identically promoted 

within any given store. 
 Calculation of g

btq̂  in equation (3.6) requires integration over the random coefficients iν .  

One way to do so is to generate a random sequence of draws L
l

l
1}{ =ν  that are mean-zero and 

i.i.d. Normally distributed with variance matrix V.  We then approximate equation (3.6) as 

follows. 

(3.7) 

+ +
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Generating L
l

l
1}{ =ν  using a Halton sequence is a more efficient means of calculating g

btq̂  (Train 

1999).  Since the Halton sequence produces values that are more smoothly distributed over the 

support of the Normal distribution than would occur under random sampling, we can choose a 

much smaller value for L  and still obtain accurate results.  Nonetheless, we set 000
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(3.9) ijtjtijtjtjtjtijtjtjtijtijtijtijt ZXpZXppUEU ωγνβμων ++++=+== ),,,|(~ , 

where ∑
∈
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jt πββ  

 Utility function (3.9) implies the following characterization of predicted unit sales for 

product j in week t. 

(3.10) 
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stringently assumes that every consumer observes the same price.  The disaggregated promotion 

model recognizes that if a product is on promotion in 20% of stores, then 20% of consumers 

observe the promotion and 80% do not.  In contrast, the representative store model assumes that 

consumers observe the average promotional activity across all stores (i.e., everyone observes a 

“partial” promotion).  To summarize, the representative store framework ignores inter-store 

heterogeneity, averaging over differences in price and promotional activity.  This approach is 

problematic since previous research demonstrates it leads to aggregation bias.  In contrast, our 

disaggregated promotion framework explicitly models heterogeneous store types. 

Data Requirements 

 Estimation of the disaggregated promotion model requires only standard scanner data of 

the type produced by the major vendors, ACNielsen and IRI.  Typically, such data separately 

reports dollar and unit sales for four (mutually exclusive) types of promotional activity: “No 

Promotion,” “Display Only,” “Feature Only,” and “Feature & Display.”  Given assumption (3.2), 

price is calculated as dollar sales for promotion m divided by unit sales for that promotion. 

 Scanner data reports information regarding product and promotional distribution through 
a variable known as “All Commodity Volume,” or ACV.  jtACV  is the percentage of total sales, 

across all product categories, accounted for by those stores that carry product j in week t.  This 
represents the percentage of stores that distribute a particular item.  Similarly, m

jtACV  is the 

fraction of stores where product j has promotional activity m.  Note that the percentage of stores 
that carry product j is the sum of its promotional distribution: ∑

∈
=

Mm

m
jtjt ACVACV . 

 We use these distribution measures to calculate two variables.  First, the model requires 

btN , the number of brand b’s products that are available in time t.  We also need m
btπ , the 

fraction of stores where brand b has promotional activity m.  Standard scanner data contains 

sufficient information to construct both btN  and m
btπ .  To calculate the number of products 

contained within brand b’s product line, we add up each product’s ACV: ∑
=∈

=
bjbtJj

jtbt ACVN
:

.  
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We then add up the fraction of stores where each of brand b’s products has promotional activity 
m: ∑

=∈
=

bjbtJj

m
jt

m
bt ACVN

:
.  The percentage of stores where brand b has promotion m is calculated 

as 
bt

m
btm

bt N

N
=π . 

 While each brand’s univariate promotional distribution Mm
m
bt ∈}{π  is calculated in this 

manner, the joint distribution of each brand’s promotions Gg
g
t ∈}{π  is not reported in aggregate 

scanner datasets.  Additional model restrictions must be imposed in order to estimate the joint 

promotional distribution, since a continuum of joint distributions is generally possible given a set 

of univariate distributions. 

 There is a special case, however, where the joint promotional distribution is uniquely 

determined by each brand’s univariate distribution.  Define brand b as having heterogeneous 

promotions in week t when its promotional activity varies across the stores aggregated in the 
data.  That is, when 11

0
>∑

∈
>

Mm
m
btπ

.  The joint promotional distribution is uniquely determined 

by each brand’s univariate distribution if no more 



 

- 14 - 

promotional distribution is uniquely determined by the observed marginal distributions.  

Alternatively, to apply the model to the 15% of observations where the joint distribution is not 

known, we have to make an additional assumption about functional form to get identification.  

Specifically, we assume the joint promotional distribution can be constructed from a copula of 

the marginal distributions.  The data is used to estimate the single parameter of the copula jointly 

with the other model parameters. 

 Deciding between these two approaches involves the familiar bias-variance tradeoff.  The 

obtained estimates will be more precise if one imposes additional structure that allows the model 

to be estimated from the full data sample.  However, they may be biased if the employed 

assumptions are invalid.  We believe that, on balance, the benefit of exploiting the entire data 

sample outweighs the cost of imposing the additional model structure detailed below.  Of course, 

those who believe the benefit does not outweigh the cost can instead estimate the model using 

the subset of the data where the joint promotional distribution is known. 

 We rely on the following framework.  Let each retail chain be composed of a continuum 

of stores.  Brand b’s promotional activity in store s during week t is determined by latent variable 

bstυ , which has a standard Normal distribution.  This variable is used to assign brand b’s 

promotional activity in store s.  We assume brand b’s promotional activity is weakly increasing 

in bstυ  based on the following rank order of promotional activity, from lowest to highest: “No 
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 We then use a Gaussian copula to specify the joint distribution of each brand’s latent 

variable bstυ .  Define Bbbstst ∈= }{υυ , where vector stυ  is mean-zero and i.i.d. Normally 

distributed with variance matrix Ω .  Denote the probability distribution function of stυ  by 

);( Ωstυφ .  To minimize the number of estimation parameters, we assume Ω  has identical off-

diagonal elements ]1,0[∈ρ  and unit values along the main diagonal.8 

 Parameter ρ  represents retailer strategy regarding how products are jointly promoted 

across stores.  Retailers independently set each brand’s promotional activity when ρ  equals 

zero.  As ρ  increases, the promotional activity of competing brands becomes more positively 

correlated.  That is, in stores where a retailer chooses a high level of promotional activity for one 

brand, for larger values of ρ  it more frequently chooses a high level of promotion for the other 

brands in those stores. 

 This framework provides sufficient structure to calculate the joint promotional 
distribution Gg

g
t ∈}{π  .   To calculate g

tπ  for each Gg∈ , we numerically integrate );( Ωstυφ  

over the range of values where the promotional activity of each brand Bb∈  equals )(gmb . 

(3.12) ∫
Υ

Ω=
g
t

stst
g
t dυυφπ );( , 
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 To summarize, this framework uses each brand’s univariate promotional distribution to 

choose a joint promotional distribution from a family characterized by estimation parameter ρ .  

We estimate ρ  jointly with the other demand parameters via maximum likelihood (see the 

following subsection).  As discussed below, ρ  is identified by how variation in this parameter 

                                                 
8 Parameter ρ  does not vary over time and is identical across retailers.  We make this simplifying 

assumption since only 15% of the dataset’s observations identify the joint promotional distribution.  A more flexible 
specification can be employed in situations where it is practical to do so. 
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impacts predicted market shares.  It is not possible to estimate ρ  prior to solving for the other 

demand parameters, since predicted market shares cannot be computed without them. 

 However, one can use the following two-stage estimation procedure to solve for ρ  after 

using a subset of the data to estimate the 
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equals observed quantity sold.  This specification is theoretically appealing since the error 

structure is integrated within the utility-based demand model.9 

 This approach has two drawbacks, however.  First, the proposed inversion method is 

computationally intensive.  Second, it requires a strong belief that the “correct” model is being 

employed; Berry discusses how his inversion method is sensitive to model mis-specificatiodr341Cn
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variance as a second order polynomial in m
btπ , the fraction of stores where brand b has 

promotional activity m. 

(3.13) 
2)(210)(

m
bt

m
btm

bt eVar
παπαα
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++
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Denote the probability distribution function of m
btε  by ))(,( m

bt
m
bt Var εεφ
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the percentage of stores, for each level of promotional activity other than “No Promotion.”  This 

is due to two distinct effects.  First, promotions lead to an outward shift in the demand curve for 

a given brand.  Promotional activity is also associated with a price reduction, with approximately 

10% lower prices when on “Display Only,” and 30% lower when on “Feature Only” or “Feature 

& Display.”  These promotional price reductions are a second factor leading to increased sales. 

Table 2 presents parameter estimates for the disaggregated promotion model.  Price 
coefficient mβ and intercept mμ  increase (in absolute value) in the level of promotion m, with 

“No Promotion” the lowest promotional activity, “Display Only” and “Feature Only” 

intermediate promotions, and “Feature & Display” the highest type of promotional activity.  The 

net impact of these two parameter changes is that a promotion unaccompanied by a price 

reduction leads to only a small, positive increase in consumer utility (and therefore sales).  

However, since promotions make consumer utility a steeper function of price, a price reduction 

accompanied by promotional activity has greater impact than the same price reduction and 

promotion when separately undertaken. 

 Table 2 also presents parameter estimates for the representative store model.  The 

parameters for “Display Only” and “Feature & Display” are imprecisely estimated.  Table 3 

reveals why this is the case.  Retailers typically employ these types of promotions in only a small 

fraction of stores in any given week.  For example, when Brand A is on “Display Only” in at 

least one store in a city-chain, on average 2.5% of stores promote Brand A in this manner.  

Similarly, on average only 8.9% of stores have a “Feature & Display.”  The representative store 

model is unable to isolate the impact of “Display Only” or “Feature & Display” using data 

aggregated with promotions that are more prevalent.  In contrast, the disaggregated promotion 

model estimates these effects quite precisely. 

 In addition to the demand estimates presented in Table 2, the disaggregated promotion 

model has an additional parameter ρ .  Recall that this parameter is used to estimate the joint 

distribution of each brand’s promotional activity.  We obtained the corner solution 1=ρ .  As a 
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robustness check we re-estimated the model assuming 0=ρ .11  We obtained similar results for 

the other demand parameters.  This insensitivity to the value of ρ  does not imply, however, that 

aggregation bias is not a problem.  As discussed earlier, the value of ρ  affects only those 15% of 

weeks where at least two brands have heterogeneous promotions.  In contrast, aggregation bias 

affects the results of the representative store model even when only one brand has heterogeneous 

promotions.  In this case, only one joint promotional distribution can arise given each brand’s 

univariate distribution.  The representative store model ignores this information, and instead 

assumes every consumer observes the average promotional activity across stores.  It is much 

more common for retail chains to promote a single brand than two or more brands at the same 

time.  As such, the disaggregated promotion model requires that we estimate the joint 

distribution of promotions for a subset of those weeks where at least one brand has 

heterogeneous promotions across stores.  This is why the demand estimates produced by our 

model are similar regardless of whether 0=ρ  or 1=ρ , even though aggregation bias 

significantly impacts the results of the representative store framework. 

The first set of estimates in Table 4 presents each brand’s own-price elasticity for each 

type of promotional activity.  This is followed by the matrix of cross-price elasticity estimates, 

calculated when each brand is not on promotion.  The third set of results reports the impact of 

each brand’s own promotional activity relative to “No Promotion.”  All three sets of estimates 

are evaluated at each brand’s average price for the given level of promotion, and are calculated 

assuming the other brands are not on promotion.  This implies the promotional effects shown in 

the third set of results report the combined effect of being on promotion and undergoing the 

average price reduction for that promotion. 

                                                 
11 We also considered the following alternative framework.  We let Gg

g
t ∈}{π  be a weighted average of 

two distributions: the distribution that arises when 0=ρ  and the distribution when 1=ρ .  Using this specification, 
we obtain the same joint distribution as before, where each brand’s promotions are positively correlated to the 
maximum possible extent. 
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As mentioned earlier, one key difference between the two sets of results is that the 

estimates for “Display Only” and “Feature & Display” are imprecisely measured in the 

representative store model.  A second, more critical shortcoming is that the promotional effects 

in the representative store model are implausibly large.  For example, while “Display Only” 

increases Brand A’s sales by 53.1% in the disaggregated promotion model, the representative 

store model predicts an enormous 1914.5% increase.  The magnitude of this effect is not a result 

of imprecise estimates, since the standard error is “only” 315.7%.  The representative store 

model produces similarly implausible estimates for other brands and types of promotions.  This 

finding is consistent with previous research that concludes data aggregation across stores with 

heterogeneous promotional activity often leads to overestimation of own-brand promotional 

effects (Link 1995, Christen et al. 1997). 

IV. Monte Carlo Analysis 

The previous section demonstrates that the disaggregated promotion model generates 

reasonable demand estimates, while the representative store model does not.  Nonetheless, it is 

impossible to state that the former model is superior without knowing the true parameter values.  

Therefore, this section uses Monte Carlo analysis to study differences between the two models, 

specifically whether the poor performance of the representative store model results from 

inadequate control of promotional heterogeneity across stores.  We simulate data using the 

control variables from the super-premium ice cream data in conjunction with the parameter 

estimates for the disaggregated promotion model.  The constructed data is then used to estimate 

the disaggregated promotion and representative store models.  Since the representative store 

model generates imprecise results, we must employ a large number of Monte Carlo simulations 

to calculate accurately the average difference between the true and estimated values.  The high 

computational burden of estimating the random coefficients logit model makes doing so 

impractical. 
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We therefore conduct this anal
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 The disaggregated promotion model requires we estimate an additional parameter ρ , 

which determines the joint distribution of promotions as a function of each brand’s univariate 

distribution.  Table 6 reports the histogram of the ρ  estimates from the Monte Carlo simulations 

discussed above, where the true value of ρ  equals one.  The table al
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before, a failure to model intra-promotional price heterogeneity leads only to minor bias; across 

the various estimates, the average percentage difference between the true and estimated values is 

never greater than 6.8%, and is generally much smaller.  The representative store model 

continues to perform worse.  As before, own-price elasticities and promotional effects are 

imprecisely estimated for “Display Only” and “Feature & Display.”  In addition, the average 

impact of these promotions is quite different from the true value.  This comparison demonstrates 

that the disaggregated promotion model is a dramatic improvement over the representative store 

framework, and can be successfully applied even when there is significant price variation across 

stores with the same promotional activity. 

V. Conclusion 

 Demand estimation using aggregate data often leads to biased results.  However, only 

limited solutions for avoiding aggregation bias currently exist.  They either have informational 

requirements that go beyond what is typically available, or fail to fully control for promotional 

heterogeneity across stores.  Due to these shortcomings, practitioners continue to rely on 

representative store aggregate demand models that ignore inter-store promotional heterogeneity, 

and which are inconsistent with adding up from consumer-level demand.  Previous research 

demonstrates these are the primary factors leading to aggregation bias. 

 We show how to avoid these leading determinants of aggregation bias.  Our framework 

generalizes beyond the representative store paradigm by explicitly modeling heterogeneous store 

types.  An aggregate demand model consistent with store-level heterogeneity is constructed by 

adding up demand across each type of store.  This formulation requires the fraction of stores of 

each type, which we show how to estimate using information included in the scanner datasets 

produced by the major vendors, ACNielsen and IRI. 

 The presented empirical application demonstrates how to apply our proposed 

methodology to extant aggregate demand models.  We not only show how to avoid aggregation 

bias, but also obtain results that are more precisely estimated.  This is confirmed by Monte Carlo 
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Table 1 

Summary Statistics 

Brand A
No

Promotion
Display

Only
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Table 2 

Parameter Estimates 

Model 1: Disaggregated Random Coefficients Logit Model

Mean Coefficients:
Intercept Price

No Promotion -0.61
(0.05)

Display Only 0.60 -0.79
(0.42) (0.12)

Feature Only 0.83 -1.13
(0.28) (0.09)

Feature & Display 2.40 -1.34
(0.37) (0.13)

Standard Deviation of Random Coefficients:

Price 0.13
(0.08)

Display Only 1.01
(0.53)

Feature Only 1.71
(0.18)

Feature & Display 1.22
(0.42)

Model 2: Standard Random Coefficients Logit Model

Mean Coefficients:
Intercept Price

No Promotion -0.59
(0.04)

Display Only -0.60 1.22
(2.77) (0.91)

Feature Only 1.07 -1.03
(0.27) (0.09)

Feature & Display 6.90 -2.44
(1.58) (0.61)

Standard Deviation of Random Coefficients:

Price 0.06
(0.10)

Display Only 1.29
(0.64)

Feature Only 0.96
(0.28)

Feature & Display 0.04
(0.87)  

Notes:  Standard errors are reported in parentheses.  Model 1: N=4,332, log-likelihood=-335.87, and RMSE=.34.  Model 2: 
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Table 3 

Average Percentage of Stores on Promotion  

No
Promotion

Display
Only

Feature
Only

Feature & 
Display

Brand A 93.0% 2.5% 69.9% 8.9%

Brand B 98.2% 4.9% 87.0% 12.6%

Brand C 90.2% 2.3% 78.5% 11.1%

Brand D 99.4% 5.6% 89.9% 12.0%  
Notes:  For each calculation, the data sample is restricted to those observations where at least one store has the given type of 

promotional activity for that brand. 
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Table 4 

Estimated Own- and Cross-Brand Effects 

Disaggregated Random Coefficients Logit Model Standard Random Coefficients Logit Model

Own-Price Elasticity by Promotion Own-Price Elasticity by Promotion
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
Brand A -1.62 -1.87 -1.84 -2.27 -1.75 0.76 -1.88 -3.24

(0.07) (0.24) (0.15) (0.23) (0.07) (0.62) (0.16) (0.77)

Brand B -1.66 -1.97 -1.90 -2.29 -1.66 1.30 -1.76 -3.14
(0.06) (0.24) (0.15) (0.22) (0.07) (1.03) (0.15) (0.68)

Brand C -1.56 -1.81 -1.72 -2.22 -1.60 0.89 -1.72 -3.20
(0.07) (0.23) (0.14) (0.22) (0.07) (0.69) (0.16) (0.78)

Brand D -1.81 -2.32 -2.15 -2.69 -1.85 1.54 -2.05 -4.30
(0.08) (0.28) (0.18) (0.25) (0.09) (1.18) (0.17) (0.94)

Cross-Price Elasticities Cross-Price Elasticities
In response to a price increase by: In response to a price increase by:

Brand A Brand B Brand C Brand D Brand A Brand B Brand C Brand D
Brand A -1.62 0.07 0.13 0.02 -1.75 0.04 0.07 0.01

(0.07) (0.01) (0.03) (0.00) (0.07) (0.01) (0.02) (0.00)

Brand B 0.21 -1.66 0.16 0.03 0.11 -1.66 0.10 0.02
(0.03) (0.06) (0.03) (0.01) (0.03) (0.07) (0.03) (0.01)

Brand C 0.13 0.05 -1.56 0.02 0.07 0.03 -1.60 0.01
(0.03) (0.01) (0.07) (0.00) (0.02) (0.01) (0.07) (0.00)

Brand D 0.16 0.06 0.14 -1.81 0.09 0.04 0.08 -1.85
(0.03) (0.01) (0.03) (0.08) (0.02) (0.02) (0.02) (0.09)

Own-Brand Promotional Effects Own-Brand Promotional Effects
Display

Only
Feature

Only
Feature & 

Display
Display

Only
Feature

Only
Feature & 
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Table 5 

Monte Carlo Results 
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Table 6 
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Notes:  For each value of ρ , the table reports histograms from 5,000 Monte Carlo simulations. 
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Table 7 

Monte Carlo Results, Allowing for Intra-Promotional Price Heterogeneity 

Average Percent Difference
Disaggregated Logit Model

Average Percent Difference
Standard Logit Model

Own-Price Elasticity by Promotion Own-Price Elasticity by Promotion
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
Brand A 2.88% 4.27% 5.09% 5.74% 2.63% 7.77% 4.22% -2.98%

(3.32%) (4.63%) (5.29%) (5.80%) (3.97%) (84.30%) (7.58%) (42.34%)

Brand B 2.79% 4.10% 4.71% 5.07% 2.55% 8.30% 3.94% -2.70%
(3.32%) (4.61%) (5.22%) (5.64%) (3.97%) (84.60%) (7.49%) (41.46%)

Brand C 2.88% 4.27% 5.09% 5.72% 2.63% 7.94% 4.24% -2.84%
(3.32%) (4.64%) (5.31%) (5.83%) (3.97%) (84.52%) (7.60%) (42.60%)

Brand D 2.77% 4.06% 4.61% 4.86% 2.53% 8.74% 3.86% -2.39%
(3.32%) (4.61%) (5.23%) (5.64%) (3.97%) (85.04%) (7.50%) (41.62%)

Cross-Price Elasticities Cross-Price Elasticities
In response to a price increase by: In response to a price increase by:

Brand A Brand B Brand C Brand D Brand A Brand B Brand C Brand D
Brand A 2.88% -0.18% -0.43% -0.48% 2.63% -0.60% -0.68% -0.83%

(3.32%) (3.53%) (3.45%) (3.51%) (3.97%) (4.17%) (4.13%) (4.12%)

Brand B -0.55% 2.79% -0.43% -0.48% -0.62% 2.55% -0.68% -0.83%
(3.45%) (3.32%) (3.45%) (3.51%) (4.11%) (3.97%) (4.13%) (4.12%)

Brand C -0.55% -0.18% 2.88% -0.48% -0.62% -0.60% 2.63% -0.83%
(3.45%) (3.53%) (3.32%) (3.51%) (4.11%) (4.17%) (3.97%) (4.12%)

Brand D -0.55% -0.18% -0.43% 2.77% -0.62% -0.60% -0.68% 2.53%
(3.45%) (3.53%) (3.45%) (3.32%) (4.11%) (4.17%) (4.13%) (3.97%)

Own-Brand Promotional Effects Own-Brand Promotional Effects
Display

Only
Feature

Only
Feature & 

Display
Display

Only
Feature

Only
Feature & 

Display
Brand A NaN -3.22% -5.23% -6.09% NaN 64.74% -2.65% 19.53%

NaN (6.25%) (3.38%) (3.22%) NaN (110.31%) (4.68%) (28.39%)

Brand B NaN -3.07% -4.05% -5.13% NaN 71.06% -1.77% 18.28%
NaN (6.53%) (3.36%) (3.26%) NaN (121.74%) (4.74%) (26.09%)

Brand C NaN -4.18% -5.65% -6.78% NaN 70.77% -2.95% 20.73%
NaN (7.01%) (3.53%) (3.47%) NaN (122.26%) (4.88%) (31.49%)

Brand D NaN -4.30% -3.73% -4.73% NaN 73.70% -1.53% 18.45%
NaN (7.03%) (3.21%) (3.25%) NaN (126.93%) (4.54%) (26.33%)  

Notes:  The table reports the average percent difference between the true and estimated values across the 5,000 Monte Carlo 
simulations.  The standard deviation of the percent difference is reported in parentheses. 
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