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I. Introduction 

The purpose of this paper is to examine in some detail the 

optimal strategy for setting civil penalties for a regulatory 

agency that is charged with regulating an industry of risk-
�~� 

neutral firms that impose monetarily measurable social injury 

when they violate the regulations. In my model, there is no 

uncertainty in the minds of the firms or the regulator as to what 

constitutes a violation. The agency's budqet, which is outside 

of its control, determines the probability that it will be able 

to detect any particular violation, so this probability is 

exoqenous from the point of view of the agency.l Thus, the 

agency's decision variable is the size of the penalty. Its 

desideratum is to achieve the economically efficient violation 

rate. That is, it wants to set a penalty structure such that the 

firm will not violate unless its expected gain �f�r�o�~� the violation 

exceeds the expected social injury. The second section of this 

paper describes the standard approach to this problem, explains 

why this approach is unsatisfactory from the practical and the 

theoretical points of view, and �d�e�s�~�r�i�b�e�s� an alternative approach 

that IS more satisfactory. The third section describes an 

1 The problem of establishinq an optimal probability of detec­
tion is left to the leqislative hody that sets the hudget. For 
discussion of how this optimal probability might be set, see 
Becker, Landes and Posner, Polinsky and Shavell, and Keenan and 
Rubin. 



empirical implementation of this alternative approach. Section 

IV discusses some extensions. 

II. The Optimal Penalty 

The standard approach in the literature to the optimal 

penalty problem is to set it equal to (G/y), where G is the 

social injury from violation and y 



the Federal 



One could in principle adapt the one-period model to a multi-

period context by varying the penalty depending on the violation 

length in such a way that the standard equality is met in each 

case, i.e., P(T) = �y�~�T�)�'� where y(T) is the probability of being 

caught at time T after violation begins. This would mean that, 

given any lenqth of violation, it would be profitable to continue 

the v i<.)la t ion one Hlv c period if and only if G* > G. Suppose, tor 

example, that the potential injury from violation is $100 per 

year, and that the probabilities of detection in the first three 

years of violation are i' i, and 1. Then, the appropriate penalty 

structure for this firm using this approach would be $500, $400, 

and $100, depending on whether the violation is caught during the 

first, second, or third year of violation. With such a structure, 

a firm that has never violated, but is contemplating a violation 

of one year would find positive expected profits from doing so 

only if G* > G. Likewise, for a firm that had violated one year 

or two years. It is intuitively plausible, and easily shown, that 

such a penalty structure also makes the expected net gain for a 

strateqy of 'permanent' violation positive if and only if G* > G. 

However, while such a variable penalty structure is optimal for a 

certain class of violationl , it presents several problems in 

theory and at least one in practice. 

1 For violations that involve a sequential "violate--do not 
violate" decision each period, the variable penalty structure is 
superior to a fixed penalty. For violations that involve a once-

(footnote continued) 
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establish the true length of the 



or rP(T) for a fixed or variable penalty, respectively, where �~� is 

the discount rate), plus the direct gain from another period of 

violation (G* in either penalty regime), minus the difference 

between the penalty next period and the penalty this period (0 

for a fixed penalty, negative for a penalty that decreases with 

the �l�e�n�g�t�h�~�o�f� violation). So the marginal value of evading 

detection is (rP* + G*) for a fixed penalty and (rP(T) + 

G*-dP(T)), with dP(T) < 0, for a variable penalty. For small 

values of I, the latter is clearly greater than the former, both 

because peT) is very large for T small and because of the 

negative dP(T) term. Thus, for at least some small values of T, 

the incentive to evade detection is greater under a regime of 

variable penalties, and more resources will be devoted to this 

goal at least toward the beginning of the violation than would be 

devoted under a regime of fixed penalties. While the incentive 

to evade under a variable penalty regime will eventually (for T 

large) fall below the incentive with a fixed penalty, the net 

present value of resources devoted to evasion over the lifetime 

of the violation under the former regime will certainly be larger 

if the rate of discount is high. 

On a prac 11.4 355.276ca41 0 0 1158 247.78 240 T Tm (aprac 11.4 3s4ly )Tj 12.4158 244 5be if b1.4 319.42 3350 11.4 124.29 263.77 m,589 0 0 11.4 124.29 264 40e11.4 124.263.77 m,589 0584 0 0 11.80 Tm (rate )3 Tm14aprac 11.4 3s4escrip7 0 0 11.4 284359.05 Tm (d428.3263.77 m,589 011.4 73.5s42(thaj 12.55388 216.25 Tm 204.44 311.5e 9l2vm (under 1 263.77 Tm208 Tc 11.40 1 171413284 311.05 Tm value )TjTj .1897 0 0 11.4.861413284 311equ(aprac 11.4.8369 0 0 11.1 959861413284 311(evasion )3.7341 0 0 11.11.4 861413284 311(r 1 263.7738)Tj 13.9665 224.5561413284 311injur value )T8171935 0 0 11. 191461413284 311divid (to )Tj.4 955,589 0584 0 0 1361413284 311byvasion )3.7341 0 0 11.11.41661413284 311(r 1 263. 4659208 Tc 11.438354 21413284 311.robabilim value )Tj7875 0 0 11.44701 171413284 311iscount 5.699908 Tc 11.40 1813. 73.5s287.77tecaprac 11.4.5743 0 0 11.4 214.4 3. 73.5s287.igh. )Tj6.344.7536 0 0 1174.861 73.5s287.77ficim (.to )Tj.474 7935 0 0 11.511.861 73.5s287.Tevade 



of how many violators are cauqht each year, but also of how many 

were not cauqht, a fact which is by definition impossible to 

know. Other investiqators have used proxies for detection 

probability such as the requlatory aqency's budqet (Block, Nold, 

and Sidak), but such measures are obviously inexact. 

Because the standard approach to penalty calculation is 
�~� 

based on a quantity that is not directly estimatahle, and hecause 

its implications in a multi-period framework are not suitahle for 

public policy, it seems desirahle to develop an alternative 

approach, one that is based on an explicitly multi-period model 

and that immediately 



where �~� is the expectations operator, T is the number of periods 

the violation continues before the firm is caught and fined, G* 

is the gain per period from violation, E is the appropriate 

discount rate, and P is the penalty. Performing the integration, 

(l) is equal to: 

(2) G*[(l - E e-rT)/r) - P E(e-rT ) 



the violation j3 caught has an exponential distribution with par-

meter A (c.f. Mood, Graybill, and Boes, p. 121). That is: 

(4) f(T:A) = A e-AT , 

(The frequency of such a distribution declines exponentially with 

T.) The moment generating function for such an exponential 

distribution is: 

(5) E e-rT - A - A+r 

Substituting (5) into (3) gives: 

(6) p* = G[l-(A:r))/r(A:r) = G/A. 

Tnis is the same answer that comes from the familiar I-period 

problem: the length of the violation is irrelevant: the penalty 

is always the one-period gain divided by the (constant) proba-

bility of detection. The reason this is true is that, although 

the problem is multi-period in nature, it is entirely repetitive. 

That is, the potential violator is faced with the same "game" 

each period, so a penalty that deters violation one period will 

do so in every period. 

For some classes of violations, we would expect that the 

probability of detection really does remain more or less 

constant. Cases against firms that are under surveillance (for 

whatever reason) would not generally be triggered by complaints, 

but rather by the (probably random) checking or surveillance pro-

cess. It would seem, therefore, that the one-period probability 
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where r(y) is the gamma function, defined as r(y) 

for y>O. The moment generating function for this distribution is 

equal 



the population with respect to these characteristics bearing on 

the chances of getting caught, though not necessarily with 

respect to 



orders. The sample distribution vf T looks similar to an 

exponential distribution, being more or less downward sloping. 

Neither of two qoodness-of-fit tests would allow rejection of the 

hypothesis that the sample of T was drawn from an exponential 

distribution with parameter equal to the inver.se of the sample 

average T.l Since an exponential distribution for T would be - �~� 

produced if and only if the periodic �p�r�o�b�a�b�i�]�~�~�v� of detection is 

independent of the length of violation, this evidence can also be 

viewed as support for the proposition that this independence 

holds. The corollary is that the' first-best solution to the 

optimal penalty prohlem is to make penalties equal to the 

periodic social injury multiplied by the averaqe lenqth of viola­

tion as an estimate of (1/A).2 The fiqures in table as vio Tm (is )Tj 168427 0e11.5 49.28 507.61 Tm0ndent 



previous Commission orders.l The sample 1S considerably smaller, 

and the average violation length shorter than for order violation 

cases,2but once again the sample distribution resembles a drawing 

from an exponential distribution. Neither the Kolmogorov-Smirnov 

test nor the chi-square goodness-of-fit test would reject the null 

hypothesis that the sample was drawn from an exponential distribu­
�~� 

tion with parameter equal 



length, the distribution of the random variable !, the length of 

violation before detection, is not exponentially distributed, and 

may be unimodal. Indeed, that is the form of the sample distri-

bution in Table 3. In fact, in contrast with the 



Finally, Table 4 



discuss the implications for the theoretical calculation of the 

optimal penalty, and then the implications for the empirical 

estimation of the necessary parameters. At first blush, one 

might conjecture that this modification in the model would mean 

that the optimal penalty should be larger, since there is some 

chance �t�h�a�t�~� the firm will not be caught in its life-time and so 

will avoid paying any penalty. One might also conjecture that 

the method used in the empirical section to estimate the optimal 

penalty would give downwardly biased results. For the case of 

constant probability of detection, I show that the first 

conjecture would be wrong and the second correct, though the bias 

in the estimate may not be serious. 

In examining the theoretical implications, it is convenient 

to consider first a world populated with firms with finite and 

fixed lives, fixed in the sense that the life-time of each firm 

is the same and is known to both the firm and the regulator. Call 

the life-time z. The desideratum, once again, is to devise an 

optimal penalty �~�*� such that the expected present value expectall In the to to the optimal an a the 



for the firm to be caught requires that T < z. So, for a firm 

prospectively considering a strategy of violation, the present 

value of the penalty the firm will pay is: 

(9) PVP = P e-rT if T < z 

= 0 if T > z. 

If T is exp-onentially distributed, the expected present value of 
1. 

the penalty is therefore: 

z 00 

(lO) E(PVP) = f (P e-rT ) A e-ATdT + 
o z 

The firm qains an amount G* each period until it is caught, or it 
, 

expires, whichever comes first. After it expires, its "gain" is 

o for each period thereafter. The present value of the firm's 

total gain is: 

* 
( 11) PVG fTG* e-rtdt G (1-e-rT ) if T < = = - z 

0 r 

fZ * e-rtd t G* 
(l-e-rz ) if = G = - T > z. 

0 r 

The expected present value of the gain from violation is 

therefore: 

(12 ) 
* * z G T 'T G ex>' E(PVG) = f (--)(l-e-r ) Ae- A dT + (--)(l-e-rz ) f Ae-ATdT 
Orr z 

* = �(�~�)�(�l�-�e�-�A�Z� _ (_A_) (1-e-(r+A)Z) 
r r+A 

* = ( �~�)� [(1 - _A_) (1 - e - ( r + A �)�~�]� 
r r+A 
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The optimal penalty is: 

(13) p*'=(f). 

The optimalfty can be verified by noting that when £.* is sub­

stituted for P in (10), a comparison of (10) and the last 

equality in (12) shows that the expected present value of the 

qain exceeds the expected present value of the penalty if and 

only if G* > G. Comparing (13) with (6), it can be seen that the 

optimal penalty is the same, whether the firm's life is finite or 

infinite. This is easily generalizable to the case when the 

firm's life-time is random. Suppose that �~�,� instead of being 

fixed, is random with a frequency distribution g(z). Then the 

expectations in (10) and (12) would need to be taken over all 

possible values of �~�,� as well as over all possible values of T. 

That is, the expected present value of the penalty would all PVP(12) of of �y�gdz12) - Tf3 0.057 316.1298 0Tj 11.5  1714Tj 16.24 TOOm (a )Tj 0.05 5 494.2386 0 0 12.5 34014Tj 16.24 Tm with r+g()z(12) gdz12) a 
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One can easily verify that the optimal penalty in (13) assures 

that E(PVG) > E(PVP) if and only if Q* > G, even in this case 

when the lifetime if the firm (z) is random. The reason for the 

seemingly counter-intuitive result that the penalty for a firm 

with a finite lifetime is the same as if the firm were infinitely 

lived is as follows: Truncation of the firm's life, whether at a 

random or a fixed time, diminishes the probability that the firm 

will be fined, but also diminishes the expected value of the 

violation proportionately, since the firm gets no gains from 

violation after it expires. The fine necessary to keep it from 

violating unless Q* > Q, therefore, remains unchanged. 

Now, consider the statistical question of how the estimator 

of the optimal penalty used in Section III would be affected if 

the population of firms from which the estimate is made is 

finitely lived, with random lifetimes. The optimal penalty in 

Section III (for cases that are presumed to have a constant 

probability of detection) was estimated by multiplying the gain 

per period by the sample average time until detection. This 

latter value is the maximum likelihood estimate of 1 
(X-) , the 

multiplier in ( 6 ) • The question being considered here is whether 

the sample average is a good estimator of (1) A if firms are 

finitely lived. It would seem that this would be a downwardly 

biased estimate in this case, because large values of T are less 

likely to be observed, having been removed from the sample by 

attrition (expiration). This is indeed the case. If the 
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probability of a firm's expiration is the same each period, so 

that the distribution of a firm's lifetime is exponential, then 

the size of the bias can be exactly derived. Suppose that the 

probability that a firm will expire in any given period is S, so 

that its lifetime is distributed as: 

(15) g(z) = S e-Sz• 
'A 

What we seek is the unconditional expected value of the sample 

average time until detection, which is what we suggested using as 

an estimator of (f) in the optimal penalty calculation (equation 

(13) above). This expected value can be calculated by first 

calculating the expected value of T conditiohal U90n �~�,� and then 

integrating over all possible value of z. First, consider the 

conditional distribution of T given z. For a given value of �~�,� 

no value of ! greater than �~� will be observed, since the firm 

would have been removed from the sample. The probability of 

observing any value of ! less than or equal to �~�,� however, is the 

unconditional frequency of ! divided by the cumulative 



1 z e-'\ z 
= .\ (1 - e-Az) 

The unconditional expectation is: 

(18) E(T) = f E{Tlz) Se-Sz dz 
o 

= J o 
00 

J o 
00 

Since �(�~�)� is what we are trying to estimate, the last term of the 

right-hand side of the last equality in (18) shows the size of 

the bias. Obviously, the bias depends on the true values of S 

and.\. A realistic estimate of S seems to be about 0.004 for a 

sample population of all commercial and manufacturing firms in 

the economy.l 1 For a true value of (r) of 3.1 (as estimated for 

order violation 



act in bad faith, frequently declarinq bankruptcy ano re-orqaniz-

ing to avoid debtors or suits by injureo consumers or requlatory 

agencies), this bias could be more of a problem. For values of ! 

1 = 0.05 and (r)= 3.1, for example, the bias in the estimate of 

<i) is about 21 percent of the true value. 

The �e�~�~�d�e�n�c�e� discussed in this paper raises two interestinq 

�~�l�l�e�s�t�i�o



v. Conclusion 

The purpose of this paper was to develop a model for 

calculating penalties that would be theoretically and practically 

more appropriate for multi-period violations than the one-period 

model that is currently the only model in the literature. The 

model is depigned to accommodate classes of violations for which 

detection probabilities change over time, and there is some 

evidence to sugqest that this class is important. While the 

model was developed specifically in the context of a violation 

that, once bequn, continues until the violator is caughtl , it 

may have more qeneral applicability to virtually all multi-period 

violations, even those that involve sequential decisions, given 

that the alternative penalty structure for such cases (a penalty 

inversely related to the length of the violation) is infeasible. 

An important implication of the model is that the size of the 

penalty that is socially optimal depends on characteristics of 

the class of case being considered, and in particular on whether 

the periodic probability of detection is independent of the 

violation length. Finally, extensions of the hasic model suqqest 

that it is theoretically appropriate for multi-period violations 

with constant prohability of detection, even when violators have 

finite lives, and that the hias produced by the empirical methods 

suggested here is not likely to be serious in this context. 

I Or until some unanticipated changes occur in the qain or the 
penalty. 
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TABLE l.--Length of Violation for �~�e�r� Violation Cases 

Length Nurrt>er of Actual Theoretical Actual Theoretical 
(years) Cases Frequency Frequency* Cumulative Cumulative* 

0-1 12 0.273 0.276 0.273 0.276 

2 8 0.182 0.200 0.455 0.476 

3 6 0.137 0.144 0.592 0.620 

4 8 0.182 0.105 0.774 0.725 

5 �~� 5 0.114 0.076 0.888 0.801 

6 1 0.023 0.055 0.911 0.856 

7 1 0.023 0.040 0.934 0.896 

8 0 0 0.029 0.934 0.925 

9 1 0.023 0.020 0.957 0.945 

>9 2 0.045 0.055 1.002 1.000 

Total 44 

Average: 3.10 years. 

* From an exponential distribution with parameter (\ = 0.323) 



TABLE 2.--Lenqth of Violation for Comrrdssion Determinations (Mainly Synopses) 

Lenqth Number of Actual Theoretical Actual Theoretical 
(years) Cases Frequency Frequency * Ctnuulative Ctnuulative* 

0-1 11 0.611 0.496 0.611 0.496 

2 
�~� 

2 0.111 0.250 0.722 0.746 

3 3 0.167 0.126 0.889 0.872 

4 0 0 0.063 0.889 0.935 

5 0 0 0.032 0.889 0.967 

>5 2 0.111 0.033 1.000 1.000 

Total 18 

Average: 1.46 years. 

* From an exPOnential distribution with parameter (A = 0.685) estimated by 
maximum likelihood. 

Q = 7.146 0(4»0.10 0(5)::0.25 

K-S = 0.122 0»0.20 

See Table 1 for explanation of these statistics. 
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TABLE 3.--Length of Violatkn for Section 5 Redress cases 

Length Number of Actual Theoretical Actual Theoretical 
(years) cases Frequency Frequency * Cumulative Cumulative* 

0-1 9 0.134 0.105 0.134 0.105 

2 �~� 7 0.105 0.189 0.239 0.294 

3 16 0.239 0.184 0.478 0.478 

4 12 0,179 0.151 0.657 0.629 

5 10 0.149 0.107 0.806 0.736 

6 2 0.030 0.083 0.836 0.819 

7 4 0.060 0.058 0.896 0.877 

8 3 0.045 0.039 0.941 0.916 

9 3 0.045 0.026 0.986 0.942 

>9 1 0.014 0.057 1.000 1.000 

Total 67 

* From a gamma distribution with parameters (y = 1.940, A = 0.517) estimated 
by maximum likelihood. 

Q = 10.836 0(7»0.10 0(9»0.25 

K-S = 0.120 0>0.20 

For the null 



TABLE 4.--Lenqth of Violation for Truth-in-Lendinq cases 

Length Number of Actual Theoretical Actual Theoretical 
(years) Cases Frequency Frecruency* Cumulative Cumulative* 

0-1 8 0.320 0.416 0.320 0.416 

2 
�~� 

9 0.360 0.243 0.680 0.659 

3 2 0.080 0.142 0.760 0.801 

4 2 0.080 0.083 0.840 0.884 

5 3 0.120 0.048 0.960 0.932 

>5 1 0.040 0.069 1.000 1.000 

Total 25 

Average: 1.86 years. 

* From an exponential distribution with parameter (A = 0.538) estimated by 
maximum likelihood. 

Q = 4.772 8(4»0.25 8(5)::0.50 

K-S = 0.10 <5 »0. 20 

See Table 1 for an explanation of these statistics. 
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APPENDIX: A Note on 





-e = the maximum ob::;ervable in the sample (4 years in 

the above example). 

While the potential exists for this kind of bias to be a 

problem for data of this kind, it is unlikely to seriously affect 

the conclusion of the current paper for the classes of cases 

considered herein. The largest class of cases, both in terms of 

the �F�T�~�'�s� �c�a�~�e�-�l�o�a�d� and the sample used here, comprises the 

"Section 5" cases. These cases are based on Section 5 of the FTC 

act, which has been in effect since 1914.2 The bias introduced 

by such a long limit on the maximum waiting time is negligible. 

The second la.::-gest class of cases are those brought against 

a firm for violating an outstanding order which proscribes or 

prescribes certain conduct on its part. Here, there is more 

potential for bias, since the maximum observable length for a 

violation is the period between the issuance of the order and 

1984. However, a close examination of the data not only 

indicates that the bias is not likely to be large, but also 

allows us to approximate its size and adjust the parameter 

estimate accordingly. First, most (about 58% of the 38 cases 

where proper order dates were recorded) of the cases dealt with 

orders issued in 1973 or earlier, meaning that the maximum 

observable waiting time was at least 10 years. (Only 1 of the 38 

2 It should be 





1979, meaning that the maximum observable waiting time is 

relatively short. Because the cases are so close together in 

time, it is not feasible to perform the same kind of anaysis on 

this class of cases as I did for the order violation cases (i.e., 

comparing a sub-sample to the full sample) to judge the severity 

of this bias. However, there is one good reason to believe that 

the bias is not serious. Generally, when synopses are sent out, 

they are sent to firms that staff believes to be engaging in a 

certain practice. These firms are then checked soon after being 

sent the synopsis to determine if they are in violation. 

(Sometimes synopses are sent to a large number of firms in a 

particular industry because staff believes that most of the 

industry is engaging in the practices, even if they do not 

suspect each individual firm. Even in such cases, d o  



of the Truth in Lending Act, which was enacted in 1969. For 

these cases, the maximum waiting time in the sample would be on 

the ord7ahi7 0 0 0 0 c0fa15.7 49543l0.41 Tm 504ord7ahi7 506391170fa15.7 4954sam 680.41 79(the )Tj 15.59970fa15.7 4954years704.65 Tm20m (of )Tj 15.985 0 0 11.7 1115.3 704.60 144 (of )Tj 15.80 160 0 11.7 111bo 704.65 5 Tm47ting 


