Price and Quality Relationships in Local Service Industries

R. Dennis Murphy

Division of Consumer Protection, Bureau of Economics Federal Trade Commission Washington, DC 20580 <u>dmurphy@ftc.gov</u>

products. The results of these studies have also been quite consistent. In general, price and quality are only weakly correlated, with coefficients usually ranging from .20 to .25 [7]. These results are construed as evidence that consumer product markets perform "poorly," with one set of coauthors feeling motivated to title their article "The Chaos of Competition." [10]

This literature suffers from several weaknesses and limitations. Most obviously, the results can be no more reliable than CR's product ratings. Even if it is assumed that all of the CR protocols were appropriate and the tests performed competently, CR might not weight the various performance attributes for complex products such as stereo equipment, dishwashers, or tires in the same manner as would the average consumer.

And, if CR did happen to replicate the tastes of average consumers, significant subsets of buyers might still rank the products differently and willingly pay more for specialized products that might do relatively poorly in the ratings. Further, CR's ratings are not based on aesthetic qualities that may be very important to many consumers and that tend to be directly related to price.

Finally, sole reliance on CR automatically excludes all of the consumer service and retail industries that are supplied locally. Published studies of price and quality correlations for local services are limited to analyses of the legal and optometrical markets, where price advertising has been severely constrained [3]. We therefore have no systematic examinations of price and

Although some establishments refuse to participate in this phase of WCC's research, ratings generally are available for 85-90 percent of the rated firms. WCC confers a check rating for price to the firms with the lowest price index scores.

In addition to price data, WCC customarily contacts local consumer protection offices to determine the number of complaints on file for each of the surveyed firms. (As discussed below, the complaint data provide one means of checking the reliability of the WCC survey results.) Finally, for approximately one-third of the rated industries, WCC gathers information from firms on the number of principal employees, such as auto mechanics or licensed plumbers. This information is used to normalize the complaint data for size of firm, and is not published separately.³ WCC agreed, however, to provide all available employee data for the most recent rating period. These data serve as a measure of firm size in the statistical analysis.⁴

WCC Magazine is published on a roughly biannual basis, with approximately five or six industries per issue. For certain industries, such as medical professionals and financial institutions, WCC does not provide overall quality ratings and/or price index information. For the current research, suitably complete data were available for 19 service industries. In most cases, each industry was rated on several occasions over time. These industries are presented in Table I below, with the number of individual data sets for each industry given in parentheses.

³ Assuming a firm has at least one complaint on file, the employee data can be derived using the absolute number of complaints and the complaint rate index, both of which are provided in the ratings. The majority of firms, however, have no complaints, thus precluding any indirect calculation of employee size.

⁴ The ratings already contain a very rough indicator of firm size as measured by the number of respondents rating the various providers. These numbers will, however, be heavily skewed toward providers who have received high ratings in past issues of WCC, since respondents to the WCC questionnaire will be far more likely than the general public to have relied on those prior ratings as a shopping tool.

performance more critically, or be more likely to experience difficulties because of the nature of their particular service requests. Again, this potential bias in the WCC data may weaken or even reverse any positive relationship between price and quality that may actually exist in the surveyed service markets.

The price data published by WCC have their own potential problems. It would not be practical or prudent for WCC to gather price information as part of its consumer satisfaction survey. Even if consumers could remember price information reliably, there would in most instances be no way to pin down the precise nature and scope of the service that was provided. Thus, WCC gathers its own information, and is usually limited by time and budget constraints to soliciting price quotes for a small subset of the wide range of jobs provided by firms in most service industries. As a result, the price index based on these quotes is reliable only to the extent that the sampled prices reflect the prices of the services that consumers actually choose from each provider. As indicated earlier, WCC often publishes hourly labor data to supplement the price index, which provides a rough consistency check for the analysis.

The above difficulties not withstanding, the WCC ratings provide the most comprehensive source of information on price and quality in the local service sector that we are likely to have in the foreseeable future. It would not be economically feasible for a private tester such as Consumers Union to purchase such services directly and evaluate quality. There are simply too many providers and the cost of many of the services is too high. Further, unlike many of the durables tested by CR, services cannot be resold in the used market. The WCC data therefore deserve attention by researchers.

II. HYPOTHESES TESTED

A truly rigorous exploration of this subject area would begin with a complete structural model that would predict the equilibrium correlation between price and quality for firms in a given service industry based on production cost variables, consumer demand functions, and the magnitude of consumer search costs. Such a construct would allow us to test specific hypotheses concerning the absolute value of the correlation coefficient that we should expect in each of the the sample industries.

This study does not provide such a sophisticated underpinning, both due to the heroic scale of the theoretical challenges, and because suitable data would almost certainly not be available for many of the supply and demand variables that would be involved. Absent this theoretical construct, there is really very litt Agny omplyotrelation sg

would also be of interest to test theories that might predict which types of firms *within* a given industry are likely to offer higher levels of quality, or perhaps higher levels of value. That is, in those markets where consumers do not believe they can rely upon price as an accurate indicator of firm quality, are there other firm characteristics or practices that consumers can use as a time and money-saving substitute for extensive search in determining the level of quality and price that a firm is likely to provide?

1. Signaling Mechanisms

This issue has been treated extensively in the "signaling" literature, which originated in 1974 with Spence [15] and Nelson [11]. All else equal, it is hypothesized that higher quality providers will have a greater incentive to signal their advantage through advertising and through other bonding devices such as nontransferable physical capital (e.g., specialized building designs and accoutrements), the value of which is lost if consumers are disillusioned with a provider's quality post-purchase [8, 9]. In such cases, the advertising or other signal need not have any informational content *per se*. It is the mere existence and size of the advertising or other nontransferable physical investment that assures consumers that the firm is trustworthy and prepared to please customers over the long term.⁸

In some respects, service industries do not appear to fit the signaling model very well. First, with the exception of national chains and dealer franchises present primarily in the auto repair industry (discussed separately below), few of the firms in the industries rated by WCC engage in broadcast or other major media advertising. Many of the firms serve smaller regional markets and do not operate at a scale that would justify significant advertising outlays, although such firms may place ads in smaller regional newspapers and church bulletins.

In addition, firms in many of the industries under examination provide their services in the consumer's home. Thus, bonding signals in the form of fancy, imposing office sites would not prove very effective. Many of the remaining service industries perform repair functions, where the physical plant is likely to be a basic facility readily transferrable to other uses. There is, however, one form of advertising in this sector that might perform a signaling function. This is Yellow Pages advertising.

a.. Yellow Pages Advertising

For many consumers, the Yellow Pages will provide the first and sometimes only step in the search process. Firms that wish to stand out in the crowd of listings must pay a substantial

⁸ The signaling literature is exceedingly complex, and the various signaling models often incorporate critical assumptions specifying precise consumer knowledge of firms' marginal and fixed costs. If these assumptions are relaxed, a positive relationship between quality and advertising or other signals need not be reached in equilibrium. In the words of a recent survey article, "Anything can happen." [5], p. 34.

⁹ This information was provided to the author by Marc Rysman from a data set containing pricing information for almost all Yellow Pages directories in the United States in 1997. See M. Busse and M. Rysman, "Competition and Price Discrimination in Yellow Pages Advertising" Working Paper Series ES, Number 13, Yale School of Management, June 2001.

will satisfy its customers, either in terms of the absolute quality of the service or in terms of quality adjusted for price.

Franchised car dealerships (*e.g.* Toyota, BMW, etc.) may benefit from any goodwill associated with the automobiles they represent, and consumers may assume that dealers have special expertise in repairing their brands of cars. (It should be noted, however, that the potential quality clue offered by franchise status does not constitute a pure signal in the economic sense, since its utility rests on direct information concerning the known quality of the automobile brand and logical inferences concerning the likely expertise a dealership would gain from specializing in the repair of a limited number of automobile brands.)

The hypotheses that chain or dealership affiliation is a reliable indicator of quality or value can be readily tested with the WCC data, since such affiliations are obvious from the title of the firm. Separate zero-one dummy variables were constructed for dealer and chain status, and included as a right-hand term in regressions using WCC quality ratings as a dependent variable.

2. Firm Size

Many consumers may also make quality inferences based on a service provider's size. Size is not a pure signal in the sense described above, since size is a highly complex market outcome rather than a simple short-term investment decision. Further, the relationship between size and quality (as well as price) is an interesting and important economic issue irrespective of whether consumers know a firm's scale of operations or make use of any information they might have. The fundamental question, of course, is whether large size is in fact a market reward for superior performance.

¹⁰ This is the outcome that <u>Bond *et al*</u>. [3] observed in their analysis of optometrists operating in states that did and did not allow price advertising and large chain operations. In nonrestrictive states, advertisers provided slightly less thorough eye exams than did smaller nonadvertisers, but charged substantially less for the bundled combination of eye glasses and eye exams.

"letting you know cost early," "starting and completing work promptly," and in some cases, even

In addition, the error terms for observations within any given firm will be correlated,

superior. At a minimum, these percentages do not suggest a major market meltdown of the magnitude associated with a "lemons" model outcome.

B. Consistency of WCC Quality Ratings and Complaint Data

As discussed, the WCC ratings list the number of complaints on file at local consumer protection offices for each rated firm. For certain industries, this number is normalized for firm size, as measured by number of employees. The complaint variable was included in the initial regression runs to function as a possible consistency check on the WCC quality ratings. Since a firm's complaint history is really an indirect measure of quality, it cannot be construed properly as a true independent variable in any regression that uses the WCC quality ratings as a dependent variable. It does have the potential, however, to shed some light on the reliability of the respondent ratings.

In particular, the complaint variable can help determine whether the WCC quality ratings are hopelessly biased by the possibly perverse impact that a firm's prices might have on consumer attitudes toward the firm. As described earlier, this interaction between price and consumer satisfaction, combined with possible selection biases, might yield a strong negative correlation between price and quality, even when true quality was in fact directly related to price.

Consumers presumably take the trouble to write complaint letters over what is perceived as truly egregious firm behavior. Although these complaints may involve what a consumer feels is an exorbitant price, complaints should not be generated by the more subtle impact that, say, a somewhat above-average service repair charge price might have on the disposition of a WCC respondent rating the overall performance of a firm. Thus, the complaint rate variable should help flag firms that are genuinely poor performers, and this variable should be negatively associated with the WCC ratings if these ratings are at all reliable.

The results indicate that there is in fact a persistent and strong negative correlation between firm complaint histories and the quality ratings. For the most recent rating periods, WCC provided some form of complaint data for 14 of the 19 industries. In ten cases, the data were adjusted by firm employee size. In seven of these industries, the complaint rate was negatively and significantly correlated with quality. In the three remaining industries, the coefficient sign was negative but not significant. For five industries, WCC provided only the absolute number of complaints a firm had on file. The complaint coefficients for three of these industries were negative and significant, and insignificant in the remaining two. In the entire data base, the complaint rate variable was negative and significant in approximately 90 percent of the industries for which size-adjusted data were provided. These results, though far from conclusive, do suggest that the WCC ratings are at least flagging the very worst performers.

C. Simple Price-Quality Correlations

In this section, we discuss the threshold question of whether price by itself provides a reliable indicator of quality as measured by WCC respondent performance ratings. The regressions reported do not control for any firm characteristic, such as size or status as a franchisee or dealership, or any signaling mechanism, such as Yellow Pages advertising. The analysis simply attempts to determine the extent to which consumers can rely upon price alone as an indicator of firm quality.

The results of the simple quality-price regressions for the most recent ratings period are reported in Table III. The coefficients were obtained by grouped logit analysis using the WCC quality rating as the dependent variable. P values for the price coefficients appear in parentheses.

Industry	Coefficient Sign for Price (P-value)
Carpet Cleaning	Positive (.009)
Carpet Installers	Positive (.090)
Dry Cleaning	Positive (.102)
Local Movers	Positive (.216)
Pest Control	Positive (.000)
Restaurants	Positive (.000)
Supermarkets	Positive (.000)
Tree Experts	Positive (.403)
Auto Body Shops	Negative (.548)
Air Conditioning-Htg.	Negative (.034)
Appliance Repair	Negative (.000)
Auto Mechanical Repair	Negative (.000)
Computer Repair	Negative (.078)
Electricians	Negative (.001)
Locksmiths	Negative (.003)
Plumbers	Negative (.007)
Shoe Repair	Negative (.131)
Television Repair	Negative (.307)
Watch Repair	Negative (.732)

TABLE III Quality-Price Correlations in Most Recent Rating Period

As hypothesized, those industries with particularly low search costs and relatively frequent purchase generally display significant positive correlations between price and quality. These are Carpet Cleaning, Restaurants, Supermarkets, and, just missing significance at the .10 level, Dry Cleaning (P=.102). In addition, price and quality are also positively correlated for Carpet Installers and Pest Control. The most striking feature of Table III, however, is the relentless procession of negative correlations in the eleven repair industries, seven of which are significant.

The picture does not change substantially when results for all of the ratings periods are considered. Table IV provides a detailed listing of the observed price-quality correlations for each of the 60 data sets in the sample. Table IV reveals significant positive correlations in ten data sets, representing seven industries. Of these industries, however, only Carpet Cleaning, Drycleaners, and Restaurants are consistently positive over time. Supermarkets reports a highly significant positive price-quality correlation in the two later ratings periods, but is insignificant in 1979. Significant negative price-quality correlations can be observed in 22 data sets, accounting for ten industries, and 28 sets display no significant price-quality correlation.

The widespread occurrence of negative price-quality correlations is difficult to rationalize using any rigorous theory of market performance. Even in the presence of extremely high search costs, there are no *a priori* grounds for expecting price to serve as a *perverse* indicator of quality. Rather, we would simply expect a great deal of noise with no systematic relationship between price and quality. If we are to believe the results reported above, firms apparently prosper by choosing a strategy of high prices and poor performance. It is implausible that even serious market imperfections would perpetually reward such a strategy.¹¹ Thus, we certainly cannot dismiss the hypothesis that the WCC data are biased due to the previously discussed interaction between price and consumer satisfaction with firm performance.

One alternative hypotheses for certain industries in the sample is that the simple quality and price regressions fail to control for relevant firm cost variables, particularly higher rental

¹¹ Such an outcome might occur under the extreme assumptions that consumers never purchase a service more than once and that absolutely no quality information is available prepurchase. In that event, some firms might successfully pursue a strategy of high price and low quality, since consumers seeking high quality might specifically target firms quoting the highest price for a service, and by assumption such firms would never be punished for failing to deliver the expected quality. Once these assumptions are relaxed to allow for at least some repeat purchases and limited availability of quality information, it is once again difficult to understand how the high price-low quality strategy could persist so consistently in so many industries over such a long period of time.

Industry	Year	Sign	P Value	Observations
AC & Heating Contractors	97	negative	.034	119
	92	negative	.273	106
	87	negative	.428	78
	82	negative	.518	61
	77	positive	.972	44
Appliance Repair	96	negative	.000	46
	91	negative	.002	43
	85	negative	.012	52
	78	negative	.228	60
Auto Body Repair	98	negative	.548	120
	95	negative	.422	106
	90	negative	.393	90
	85	negative	.191	105
	82	negative	.041	71
Auto Mech. Repair	01	negative	.000	482
	97	negative	.000	444
	94	negative	.000	431
	91	negative	.000	380
	88	negative	.000	354
	85	negative	.000	310
	81	negative	.000	289
	76	negative	.004	148
Carpet Cleaning	98	positive	.009	33
-	94	positive	.425	31
	87	positive	.727	30
Carpet Sales, Installation	96	positive	.090	24
	89	negative	.723	39

Table IVQuality-Price Correlations for All Industries and Ratings Periods

Industry	Year	Sign	P Value	Observations
Drycleaners	96	positive	.102	211
	90	positive	.038	232
Electricians	96	negative	.001	36
	90	negative	.036	21
Locksmiths	99	negative	.003	25
	94	negative	.499	27
	86	negative	.587	33
Movers	98	positive	.216	28
	92	negative	.720	29
	81	positive	.051	25
Pest Control	97	positive	.000	51
	93	positive	.477	37
	86	negative	.292	46
	77	negative	.030	25
Plumbers	95	negative	.007	134
	89	negative	.045	81
	83	negative	.019	97
	77	positive	.165	58
Restaurants	98	positive	.000	672
	95	positive	.000	718
Shoe Repair	95	negative	.131	95
	88	positive	.213	96
Supermarkets	01	positive	.000	8
	92	positive	.079	7
	79	positive	.997	16
Television Repair	89	negative	.307	36
Tree Experts	99	positive	.403	29
Watch Repair	` 96	negative	.691	41
	91	negative	.181	30
	80	negative	.002	52

Table IV (Continued)

discussed earlier, such firms might deliberately have chosen to limit their scale of operation and would never have considered signaling quality using a larger Yellow Pages ad.

The results provide little support for a Yellow Pages signaling function. A significant positive coefficient was found for only four of the 14 industries. In seven industries, the Yellow Pages variable was negatively and significantly associated with quality. There was no significant relationship in the remaining three industries. Simple regressions were also run to investigate whether the size of an ad might signal higher value as measured by the ratio of the quality rating to the price index. None of these regressions supported this hypothesis. Indeed, a significant negative correlation between Yellow Pages ad size and value was found in five industries.

2. Dealership and Franchisee Status

In two industries, Auto Mechanical Repair and Auto Body Repair, numerous firms in the sample were franchised dealerships for the major auto companies. In four industries (the two auto repair industries, Local Movers, and Pest Control), many of the firms were franchisees for

during which the firm will provide a free follow-up treatment, and the charge for treatment after

ratings. Price is not correlated with either firm size or chain status in this data set. (Dealerships, however, charged significantly higher prices than independents or chains.) Thus, the negative coefficients for the size and chain variables apparently should be accepted at face value.

Dependent Variable = % rating firm superior or adequate								
Logit estimates Number of firms = 441								
Log likelihood	= -6423.8417	7			i2(7) > chi2 o R2	=	872.69 0.0000 0.0636	
supq	Coef.	Std. Err.	Z	P> z	[95% (Conf.	Interval]	
dealer97 Price97 Size7 ASIE97 AAA97	-1.31156 9997785 .0046225 0147877 8662402 .189219 3748802 3.403598	.0806641 .0015918 .0034198 .2126259	$\begin{array}{c} -13.47\\ -12.39\\ 2.90\\ -4.32\\ -4.07\\ 3.43\\ -6.12\\ 13.83\end{array}$	0.000 0.004 0.000 0.000 0.001 0.001	-1.157 .0015 0214 -1.282	877 025 904 979 489 866	-1.12076 8416797 .0077424 008085 4495012 .297189 2548739 3.886101	

TABLE VFull Regression Results For Auto Repair 1997

It should also be noted that the price index variable is positively and significantly correlated with quality in Table V, whereas the coefficient was negative and highly significant when used as a single predictor. The primary explanation for the shift in signs is the explicit accounting for dealer performance in this regression. As discussed, dealers tend to be more expensive and do considerably worse in the ratings than independents. Thus, price acts partially as a proxy for dealership status when used alone as a predictor of quality.

The positive correlation in the full regression cannot, however, be interpreted as an indicator of market efficiency. The reversal in sign merely indicates that we have identified and8n merelg state

E. Stability of Price and Quality Ratings Over Time

2. Individual Firm Performance Over Time

chance events and earn a check rating in 1998. We could not conclude from this pattern, however, that check rated firms tend to milk their reputations and lower quality.

The probit analysis controls for such random fluctuations and shows more clearly whether there are real differences in the propensity for check rated and non-check rated firms to score well in the subsequent period. Still, the results do not lend themselves to an unambiguous test of the milking hypothesis. In the example above, a significant marginal probability of .42 would indicate that there is no pervasive tendency for firms to shirk once a check rating is achieved. But it would not reject the hypothesis that some firms behave in this manner.

Tables VII presents the probit results for the price and quality ratings. In the column labeled Marginal Probability, the first number represents the marginal probability that firms check rated in the earliest ratings period will repeat their performance in the next rating period. The second number iuseWCC s he numrfodex daeaon rxsettinNevst reeth Td numss,catefs pershe pa3(s the ps

Industry*	Period	Marginal Probability, Price Check	P Value	Marginal Probability, Quality Check	P Value
Auto Body Repair	82-85		>.10	.645	.000
Ruto Douy Repair	85-95		>.10	.353	.005
	95-98		>.10	.536	.000
AC & Heating Contractors	77-82		>.10	Insufficient Ob	oservations
C	82-87		>.10	.477	.000
	87-92	.334	.010	.423	.000
	92-97	.450	.000	.350	.020
Appliance Repair	78-85	.485	.025	.484	.000
	85-91	.440	.047	.423	.009
	91-96	.590	.001	.409	.025
Auto Mechanical Repair	76-81		NA**	.550	.000
-	81-85	.325	.000	.543	.000
	85-88	.330	.000	.492	.000
	88-91	.341	.000	.650	.000
	91-94	.449	.000	.657	.000
	94-97	.367	.000	.555	.000
Carpet Cleaners	87-94		>.10	Insufficient Ol	oservations
-	94-98	.620	.013	.340	.024
Carpet Installers	89-96	Insufficient O	bservations		>.10
Computer Repair	89-94	Insufficient O	bservations	Insufficient O	bservations
	94-98	.576	.045	.420	.080
Drycleaners	90-96	No Price Cheo	ek Variable	.430	.000

TABLE VII Probability That Firms Check Rated For Price or Quality Will Be Check Rated in Subsequent Evaluation Period

Industry	Period	Marginal Probability, Price Check	P Value	Marginal Probability, Quality Check	P Value
Electricians	90-96	Insufficient O	bservations	.500	.041
Local Movers	81-92	Insufficient O			>.10
	92-98	Insufficient O	bservations	Insufficient	Observations
Locksmiths	86-94		>.10	Insufficient	Observations
	94-99	.420	.070		>.10
Pest Control	77-86		>.10	Insufficient	Observations
	86-93		.10	Insufficient	Observations
	93-97	.544	.009	.681	.000
Plumbers	77-83	.260	.009	.561	.000
	83-89	.250	.050	.268	.020
	89-95	.174	.100	.467	.000
Shoe Repair	88-95	.451	.001	.283	.041
Watch Repair	89-91	Insufficient O	bservations		>.10
-	91-96	No Price Che	ck Variable	.470	.002

TABLE VII (Cont.) Probability That Firms Check Rated For Price or Quality Will Be Check Rated in Subsequent Evaluation Period

VII. CONCLUSIONS

The results of this Working Paper paint a very mixed picture of the economic performance of the consumer service sector in the Washington D.C. area. Judging strictly from

does not appear that most firms "milk" any reputation advantage from the WCC ratings by lowering quality.

Overall conclusions are difficult, particularly because of the potentially serious bias introduced by an interaction between price and the WCC quality rankings. It does appear, however, that consumers in the Washington D.C area have a higher probability of reporting a favorable quality assessment to <u>Washington Consumer Checkbook</u>, if they patronize smaller independent service providers and rely on word-of-mouth reputation rather than Yellow Pages displays, or other indirect clues such as firm size, affiliation with a national chain, or status as a franchised dealership.

REFERENCES

1. AKERLOF, GEORGE A., (1970), "The Market for 'Lemons': Quality Uncertainty and the Market Mechanism," <u>Quarterly Journal of Economics</u> 84, 488-500.

2. ARCHIBALD, ROBERT B., CLYDE A HAULMAN, and CARLISLE E MOODY, JR., (1983), "Quality, Price, Advertising, and Published Quality Ratings," <u>Journal of Consumer</u> <u>Research</u> 9, 347-356.

3. BOND, RONALD S., ET AL., (1980), "Effects of Restrictions On Advertising and Commercial Practices In the Professions: The Case of Optometry." Staff Report to the Federal Trade Commission, Washington, D.C.

4. BUTTERS, GERARD R., (1977), "Equilibrium Distribution of Sales and Advertising Prices," <u>Review of Economic Studies</u> 44, 465-491.

5. CAVES, RICHARD E., and DAVID P. GREENE, (1996), "Brands' Quality Levels, Prices, and Advertising Outlays: Empirical Evidence on Signals and Information Costs," <u>International Journal of Industrial Organization</u> 14, 29-52.

6. GERSTNER, EITAN, (1985), "Do Higher Prices Signal Higher Quality?," <u>Journal of</u> <u>Marketing Research</u> 22, 209-215.

7. GEISTFELD, LOREN V., (1988), "The Price Quality Relationship: The Evidence We Have, The Evidence We Need," <u>The Frontier of Research in The Consumer Interest</u>, ACCI: 143-172.

8. IPPOLITO, PAULINE M., (1990), "Bonding and Nonbonding Signals of Product Quality," Journal of Business 63, 41-60.

9. KLEIN, BENJAMIN, and KEITH B. LEFFLER, (1981), "The Role of Market Forces in Assuring Contractual Performance," Journal of Political Economy 89, 615-641.

10. MORRIS, RUBY TURNER, and CLAIRE SEKULSKI BRONSON, (1969), "The Chaos of

13. ROTHCHILD, MICHAEL, (1973), "Models of Market Organization with Imperfect Information: A Survey," Journal of Political Economy 81, 1283-1308.

14. ROTHCHILD, MICHAEL, and JOSEPH STIGLITZ, (1976), "Equilibrium in Competitive Insurance Markets: An Essay on the Economics of Imperfect Information," <u>Quarterly Journal of Economics</u> 90, 629-650.

15. SPENCE, MICHAEL, (1974), "Competitive and Optimal Responses to Signals: An Analysis of Efficiency and Distribution," Journal of Economic Theory 7, 296-332.

16. STIGLER, GEORGE J., (1961), "The Economics of Information," <u>Journal of Political Economy</u> 69, 213-225.

APPENDIX A DETAILED REGRESSION RESULTS

This appendix presents the principal regression results for the most recent ratings period for all industries in the data set. As explained in the main text (see pp. 13-14), the regressions that use the WCC quality ratings as a dependent variable employ a form of logit estimation suitable for use with grouped data. In essence, this procedure unfolds the summary quality rating for a given firm into a series of binary categorical variables, with a zero-one value generated for each respondent rating used in calculating the overall quality score.

Consider, for example, a firm that receives an overall performance rating of 80. For most industries this would mean that 80 percent of the consumers reporting on that firm rated it superior in overall performance. If there were a total of 10 respondents, the logit program would generate a series of dependent variables comprised of eight "one" values and two "zero" values. Each of these dummies would be associated with the corresponding firm-specific independent variables used in the logit regression. Thus, firms with the highest number of individual ratings automatically would be weighted heaviest in the regression estimation procedure. The estimation technique also adjusts standard errors to reflect the expected correlation of error terms among the observations for any given service provider.

The discussion first focuses on regressions that include each of the principal independent variables separately as predictors of the WCC quality score. These bivariate regressions test whether consumers can rely on the attribute in question in isolation as a signal of quality. For the Yellow Pages and firm size variables, regression results are also shown testing the hypothesis that consumers can rely upon the size of a Yellow Pages ad or the size of a firm to signal value, as measured by the WCC quality score divided by the WCC price index.

For those industries with a full complement of independent variables, results are then reported for multivariate regressions that reveal more precisely any independent explanatory power that the various variables might have in predicting firm quality. These results are not, however, directly relevant to the primary signaling hypothesis in question, since such theories do not posit that consumers will consciously or unconsciously control for other factors when viewing a single firm attribute as a possible signal of quality.

Air Conditioning and Heating Contractors (1997)

This data set includes both the Yellow Pages and employment size variables. Regression

Yellow Pages ad to offer better value in terms of quality per dollar. There is actually a significant negative correlation between these two variables. Regression 5 reveals a negative but insignificant correlation between value (the quality rating adjusted for price) and the size of the firm.

Regression 6 discloses a significant positive relationship between Yellow Pages advertising and quality when firm size and price are also included as independent variables. As is shown in Regression 7, the Yellow Pages variable is positively correlated with price and firm size. Because these two variables are in turn negatively correlated with quality, Yellow Pages functions as a partial proxy for price and size in Regression 3 and loses much of its independent positive correlation with quality.

Regression 1: Dependent Variable = %rating firm superior Independent Variable = WCC price index

Logit estimates	Number of firms	=	119
	Wald chi2(1)	=	4.49
	Prob > chi2	=	0.0340
Log likelihood = -4318.1521	Pseudo R2	=	0.0047
(s	standard errors adjusted for clusterin	g on i	idno97)

Logit est6imates	Number of firms =	119	
17.73	Prob > chi2 =	0.0340Log likeliho	

Regression 3: Dependent Variable = %rating firm superior Independent Variable = size of Yellow Pages ad

Logit estimates			Number Wald c	of firms = hi2(1) =	115 0.17
Log likelihood = -4624.8634	Ł		Prob > Pseudo		0.6767 0.0002
	(standard	errors	adjusted for	clustering	on idno97)
 supq Coef.	Robust Std. Err.	Z	P> z	[95% Conf	. Interval]
yp97 .0013026 _cons .9231844	.003124 .1079349	0.4 8.5		0048203 .711636	.0074255 1.134733

Regression 4: Dependent Variable = size of Yellow Pages ad Independent Variable = value (quality/price)

Source	SS	df	MS		Number of firms = 102 F(1, 100) = 13.86
Model Residual Total	5610.21758 40478.981 46089.1985	100 404	.21758 .78981 328698		Prob > F = 0.0003 R-squared = 0.1217 Adj R-squared = 0.1129 Root MSE = 20.119
yp97	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
value _cons	-45.44601 57.25293	12.20733 11.50368	-3.723 4.977	0.000 0.000	-69.66501 -21.22702 34.42995 80.07591

Regression 5: Dependent Variable = number of employees Independent Variable = value (quality/price)

Source	SS	df	MS		Number of firm F(1, 115)	
Model Residual	401.425903 27798.822	1 401. 115 241.	4 2 5 9 0 3 7 2 8 8 8 7		Prob > F R-squared Adj R-squared	$= 0.2001 \\ = 0.0142$
Total	28200.2479	116 243.			Root MSE	= 15.548
employ97	Coef.		 t	P> t	[95% Conf.	Interval]
value _cons	-10.79503 26.18363	8.376937 8.028892	-1.289 3.261	0.200 0.001	-27.38812 10.27994	5.798074 42.08732

Regression 6:	-		number c	-	es, size of	Yellow	
Logit estimate	S				of firms = hi2(3) =	101 14.36	
				Prob >	chi2 =	0.0025	
Log likelihood = -3994.811 Pseudo R2 = 0.0143							
	(standard errors adjusted for clustering on idno97)						
1		Robust					
supq	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
employ97	0141104	.0048582	-2.90	0.004	0236323	0045885	
yp97	.0089862		2.69	0.007	0024337	.0155386	
price97		.004524		0.001	0237323	0059986	
-	2.647565		5.31	0.000	1.669567		
_cons	2.04/505	.4909870	5.31 		1.009507	3.025502	

Regression 7: Dependent Variable = size of Yellow Pages ad Independent Variables = number of employees, WCC price index, %rating firm superior

Source	SS	df	MS		Number of fir F(3, 97)	
Model Residual	13071.5361 32845.053		7.1787 608794		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2847
Total	45916.5891	100 459.	165891		Root MSE	= 18.401
yp97	Coef.	Std. Err.	t	 P> t	[95% Conf.	Interval]
employ97 price97 super97 _cons	.4527038 .5658379 .1546826 -61.42468	.1165674 .1158479 .1265388 17.26251	3.884 4.884 1.222 -3.558	0.000 0.000 0.225 0.001	.2213497 .3359119 0964618 -95.68598	.6840579 .7957638 .405827 -27.16337

Auto Body Repair (1998)

The simple two-way regressions for the 1998 Auto Body Repair data set reveal no significant association between price and quality (Regression 1), and highly significant negative correlations between quality and firm size (Regression 2), dealer status (Regression 6), and chain status (Regression 7). (There is only one national chain represented in this data set). Regression 3 reveals no significant relationship between quality and the size of Yellow Pages advertising, and Regression 4 shows that the Yellow Pages variable is not significantly correlated with the value variable (WCC quality score/WCC price index). In Regression 5, there is a highly significant negative correlation between value and size of firm.

With all of the independent variables included in Regression 8, dealer status and chain status continue to display highly significant negative coefficients. Firm size and Yellow Pages advertising lose significance, however, and price remains insignificant. Further investigation revealed that the dealer dummy variable and firm size are positively correlated (r=.42). Thus, when firm size is used as the only regressor, it functions partially as a proxy for dealer status in predicting firm quality. Taken together, the results for the full regression and siOria gd:jw Pages

Regression 3: Dependent Variable = %rating firm superior Independent Variable = size of Yellow Pages ad

Logit estimate	es			Numb	er of firm	s =	95
				Wald	l chi2(1)	=	0.79
				Prob	> chi2	=	0.3730
Log likelihood = -1882.6538 Pseudo R2 = 0.0009							
		(standard	errors	adjusted f	or cluster	ing	on idno98)
		Robust					
supq	Coef.	Std. Err.	. z	P> z	[95% Co	onf.	Interval]
	+						
ур	0083301	.0093499	-0.8	9 0.373	02665	56	.0099954
_cons	1.04312	.1049185	9.9	4 0.000	.83748	34	1.248756

Regression 4: Dependent Variable = size of Yellow Pages ad Independent Variable = value (quality/price)

Source	SS	df 	MS		Number of firms = 95 F(1, 93) = 1.29
Model Residual Total	130.662894 9404.25158 9534.91447	93 101.1	62894 20985 43526		Prob > F = 0.2586 R-squared = 0.0137 Adj R-squared = 0.0031 Root MSE = 10.056
ур	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
value _cons	-6.909842 12.17246	6.078726 4.41782	-1.137 2.755	0.259 0.007	-18.98099 5.161304 3.399545 20.94537

Regression 5: Dependent Variable = number of employees Independent Variable = value (quality/price)

Source	SS	df	MS		Number of firms = 120 F(1, 118) = 25.21
Model Residual Total	558.897059 2615.85086 3174.74792	118 22.16	897059 582276 785539		F(1, 118) = 25.21 Prob > F = 0.0000 R-squared = 0.1760 Adj R-squared = 0.1691 Root MSE = 4.7083
employ98	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
value _cons	-12.46466 16.65288	2.482447 1.776893	-5.021 9.372	0.000	-17.38058 -7.548738 13.13414 20.17161

Regression 6: Dependent Variable = %rating firm superior Independent Variable = dealer status (dealer = 1)							
Logit estimate	es			Wal	(_)	=	
Log likelihood	d = -2187.062	4			ob > chi2 eudo R2		0.0000 0.0293
		(standard	errors a	adjusted	for clust	ering o	on idno98)
supq	•	Robust Std. Err.					
dealer _cons	9553177	.131402	-7.2	7 0.000	0 -1.21	2861	6977746 1.313697

Regression 7: Dependent Variable = %rating firm superior Independent Variable = chain status (chain = 1)

Logit estimate	S				c of firms hi2(1)	= 138 = 53.28
						0.0000
		(standard	errors adj	usted for	clusterin	g on idno98)
 supq +		Robust Std. Err.	Z	P> z	[95% Con	f. Interval]
chain _cons	-1.216412 .9481478	.1666463	-7.30 11.81	0.000	-1.543033 .7907916	8897911 1.105504

Regression 8 Dependent Variable = %rating firm superior Independent Variables = dealer status, wcc price index, size of Yellow Pages ad, number of employees, chain status

Logit estimate Log likelihood		2		LR ch	er of firms = hi2(5) = > chi2 = do R2 =	95 131.31 0.0000 0.0407
supq	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
dealer price yp employ98 chain _cons	-1.085687 .0057761 .0026465 0178601 -1.538303 .7754602	.1257825 .0067361 .006309 .0101569 .3354031 .6555708	-8.63 0.86 0.42 -1.76 -4.59 1.18	0.000 0.391 0.675 0.079 0.000 0.237	-1.332216 0074264 0097188 0377674 -2.195681 5094349	8391573 .0189786 .0150119 .0020471 8809248 2.060355

Regression 9: Dependent Variable = %rating firm superior Independent Variables = dealer status, WCC price index, number of employees, chain status

Logit estimates					Number	of fir	rms =	120
					LR chi	2(4)	=	176.25
					Prob >	chi2	=	0.0000
Log likelihood =	-1847.7438				Pseudo	R2	=	0.0455
supq	Coef.	Std.	Err.	Z	P> z	[95%	Conf.	Interval]
+								

Regression 1:	Dependent Va Independent				or or adequat	e
Logit estimate	25			Wald c	c of firms = chi2(1) = chi2 =	30.05
Log likelihood	a = −6770.2166				R2 =	
		(standard	errors ac	ljusted fo	or clustering	on comno)
 supq 	Coef.					Interval]
pricin97	0159178 3.679106	.0029039	-5.48	0.000	0216093	
Regression 2:	Dependent Va Independent		-	_	—	e
Logit estimate	25			Wald c	c of firms = chi2(1) = chi2 =	55.66
Log likelihood	a = -7610.5535			Pseudo	> chi2 = > R2 =	0.0311
		(standard	errors ac	ljusted fo	or clustering	on comno)
supq	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
	0429339 2.583182	.0872403		0.000	0542129 2.412194	0316549 2.75417
Regression 3:	Dependent Va	riable = %1	rating fin	rm superio	or or adequat ges advertise	
Logit estimate	25			Wald c	cof firms = chi2(1) = chi2 =	1.11
Log likelihood	d = -4669.489			Pseudo	• chi2 = • R2 =	0.0004
		(standard	errors ac	djusted fo	or clustering	on comno)
supq	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]

		nobube				
supq	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
1 1	0030682 2.154566		-1.06 25.38		0087671 1.988206	.0026306 2.320926

Regression 4: Dependent Variable = size of Yellow Pages ad Independent Variable = value (quality/price)

Source	SS	df 	MS		Number of firms = 278 F(1, 276) = 3.23
Model Residual + Total	1338.41317 114319.277 115657.69	276 414.	.41317 200277 536786		Prob > F = 0.0733 R-squared = 0.0116 Adj R-squared = 0.0080 Root MSE = 20.352
iotai	119097.09	2// 11/.	550700		ROOT MSE - 20.332
yp97	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
value _cons	-10.3485 19.89839	5.756882 5.525921	-1.798 3.601	0.073	-21.68147 .9844806 9.02008 30.77669

Regression 5: Dependent Variable = number of employees Independent Variable = value (quality/price)

Source	SS	df	MS		Number of firm F(1, 442)	
Model Residual + Total	6026.86996 18524.6993	1 6026 442 41.9	.86996 110844 		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.2455
1 1	Coef.			P> t	[95% Conf.	Interval]
value _cons		1.384129 1.299164	-11.992 18.519	0.000	-19.31838 21.50629	-13.8778 26.6129

Regression 6: Dependent Variable = %rating firm superior or adequate Independent Variable = dealer status

Logit estimate	S			Wald	per of firm d chi2(1)	=	515 137.69
Log likelihood	= -7531.3521				o > chi2 1do R2	=	0.0000 0.0412
		(standard	errors	adjusted	for cluste	ring	on comno)
 supq	Coef.	Robust Std. Err.	Z	P> z	[95% C	onf.	Interval]
dealer97 _cons	-1.098344 2.591357	.0936021 .0745284	-11.73 34.77		-1.2818 2.4452		9148873 2.73743

Regression 7:	Dependent Va Independent		-	-	ior or ad	lequate	2
Logit estimate	s			Wald	per of fir d chi2(1) p > chi2	=	
Log likelihood	l = -7831.9797				ido R2	=	0.0029
		(standard	errors a	djusted	for clust	ering	on comno)
 supq 	Coef.	Robust Std. Err.	Z	P> z	[95%	Conf.	Interval]
chain97 _cons	6145223 2.021323		-3.79 35.20				2965818 2.133885

Carpet Cleaning (1998)

The only variables in this data set are price and size of Yellow Pages advertisement. Price proves to be positively correlated with quality (Regression 1). Yellow Pages advertising displays an insignificant negative correlation with quality in Regression 2, and with value (quality adjusted for price) in Regression 3.

Regression 1: Dependent Variable = %rating firm superior or adequate Independent Variable = WCC price index

Logit estimates					r of firms = chi2(1) =	33 6.79
					> chi2 =	
Log likelihood =	Pseud	o R2 =	0.0470			
		(standard er	rors adju	sted for	clustering	on comidno)
ļ		Robust				
supq	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
price98 cons	.030564 -1.467002	.0117299 1.046967	2.61	0.009	.0075738 -3.519019	.0535543

Regression 2: Dependent Variable = %rating firm superior or adequate Independent Variable = size of Yellow Pages advertisement							
Logit estimate	s				r of firm chi2(1)		38 0.91
Log likelihood		> chi2 o R2	=	0.3395 0.0024			
		(standard er	rors adju	sted for	clusteri	ng or	n comidno)
supq	Coef.	Robust Std. Err.	Z	P> z	[95% C	onf.	Interval]
yp98 _cons	0046769 .7946941		-0.96 2.10		01427 .05173		.0049203 1.537653

Yellow Pages ad size and price, or for quality adjusted for price, using either the sales service or installation service satisfaction measure.

Regression 1: Dependent Variable = %rating firm adequate or superior for sales services Independent Variable = WCC price index

Logit estimate	es			Number	of firms =	36
				Wald c	hi2(1) =	2.88
				Prob >	chi2 =	0.0896
Log likelihood	d = -279.1481'	Pseudo	R2 =	0.0191		
5						
		(standard	errors ad	ljusted for	clustering	on idno96)
		·				
		Robust				
supq	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
price96	.0316688	.0186556	1.70	0.090	0048956	.0682331
cons		1.894259	-0.53	0.597	-4.714365	2.710996

Regression 2: Dependent Variable = % adequate or superior, sales services Independent Variable = size of Yellow Pages ad

Logit estimates					r of firms =	42
					chi2(1) = > chi2 =	0.46 0.4966
Log likelihood =	o R2 =	0.0021				
		(standard	errors	adjusted fo:	r clustering	on idno96)
ļ		Robust				
supq	Coef.	Std. Err	. z	₽> z	[95% Conf	. Interval]
ур96	.0120109	.0176681	0.6	8 0.497	0226181	.0466398
_cons	2.197738	.2713814	8.1	0 0.000	1.665841	2.729636

Regression 3: Dependent Variable = %adequate or superior, installation Independent Variable = WCC price index

Logit estimate	25			Wald	ber of firms d chi2(1) b > chi2	= 0.04
Log likelihood = -249.35669					udo R2	= 0.0001
		(standard	errors	adjusted :	for clusterin	ıg on idno96)
supq	Coef.	Robust Std. Err.	Z	P> z	[95% Cor	f. Interval]
price96 _cons	.0023001 1.345761	.0113312 1.146281	0.2		0199086 9009087	

Regression 4:	-	ariable = %ad Variable = s	-	-	-	cion		
Logit estimate	S			Wald c	of firms = hi2(1) =	28 2.33		
Log likelihood = -278.00221 Prob > chi2 = 0.1268 Pseudo R2 = 0.0063								
		(standard er	rors adj	justed for	clustering	on idno96)		
supq	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	. Interval]		
yp96 _cons	.0190109 1.369419		1.53 7.26	0.127 0.000	0053908 .9998473	.0434127 1.73899		

Computer Repair (1998)

This data set contains only two independent variables--price and Yellow Pages ad size. In Regression 1, price is negatively associated with quality. In Regression 2, no significant correlation is found between quality and the size of a firm's Yellow Pages ad. Further analysis (not shown) revealed a direct and significant correlation between the Yellow Pages variable and price, and no correlation between Yellow Pages ad size and value as measured by quality adjusted for price.

Regression 1: Dependent Variable = %rating firm adequate or superior Independent Variable = WCC price index

Logit estimates			Numbe	r of firms =	27	
			Wald	chi2(1) =	3.10f :	firms =
		sc	c dhbj T*	(Log likelihood	= -274224	4 3b ,mf00
	43412714	.DD3.	.010124	0.127.2042	-5.6704 4	= 0.

Regression 2:	-	ariable = %ra Variable = s	-	-	-	or
Logit estimate	s			Wald	r of firms = chi2(1) = > chi2 =	0.79
Log likelihood	= -396.03579	9		Pseud		
		(standard err	ors adju 	sted for	clustering	on comidno)
 supq +	Coef.	Robust Std. Err.	Z	P> z	[95% Conf	. Interval]
yp98 _cons		.0293559 .2741594	0.89 3.47	0.375 0.001	0314865 .4142029	.0835865 1.488888

Drycleaners (1996)

The drycleaners data set is one of the largest in the sample, although it does not contain

Regression 2: Dependent Variable = %rating firm superior Independent Variable = size of Yellow Pages ad								
Logit estimate	S			Number	of firms =	188		
				Wald c	:hi2(1) =	2.14		
				Prob >	chi2 =	0.1434		
Log likelihood	= -2423.9233	3		Pseudo	R2 =	0.0013		
		(standard err	ors adju	sted for	clustering	on comidno)		
		Robust						
supq	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]		
yp96	.0521381	.0356334	1.46	0.143	017702	.1219782		
_cons	.4273209	.0758077	5.64	0.000	.2787405	.5759013		

()Tj /T434eelA6 T2z.-aperior

Regression 1:		ariable = %r; Variable = N			or			
Logit estimate	es			Wald c	c of firms = chi2(1) = chi2 =	10.87		
Log likelihood	d = -414.351	3			R2 =			
					clustering of			
	Coef.	Robust Std. Err.	Z	P> z		Interval]		
price96	0164893 2.993674	.0050023	-3.30	0.001	0262937	006685		
Regression 2: Dependent Variable = %rating firm superior Independent Variable = number of employees								
Logit estimate Log likelihood		5		Wald c Prob >	c of firms = chi2(1) = chi2 = chi2 = chi2 =	1.65 0.1996		
					clustering of			
	Coef.	Robust	Z					
employ96 _cons	0323265 1.596658	.0252028 .1849404	-1.28 8.63		0817232 1.234182	.0170701 1.959135		
Regression 3: Dependent Variable = %rating firm superior Independent Variable = size of Yellow Pages ad								
Logit estimate		8		Wald c	c of firms = chi2(1) = chi2 = chi2 = chi2 =	9.05 0.0026		
-			rors adju	sted for	clustering o	n comidno)		
supq	Coef.		Z	P> z	[95% Conf.	Interval]		
yp96 _cons	0224215 1.622553		-3.01 11.33		0370311 1.341832			

Regression 4: Dependent Variable = size of yellow pages ad Independent Variable = value (%superior/WCC price index)

Source	SS	df	MS		Number of firms = 36 F(1, 34) = 5.19
Model Residual Total	1636.75634 10714.695 12351.4514		.75634 .13809 898611		F(1, 34) = 5.19 Prob > F = 0.0291 R-squared = 0.1325 Adj R-squared = 0.1070 Root MSE = 17.752
 ур96	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
value _cons	-24.25008 33.12038	10.64073 9.236143	-2.279 3.586	0.029 0.001	-45.87465 -2.625506 14.35028 51.89048

Regression 5: Dependent Variable = number of employees Independent Variable = value (%superior/ WCC price index)

Source	SS	df	MS	Number of firms = 32 F(1, 30) = 1.20
Model Residual	31.6064178 790.768582	1 31 30 26	.6064178 .3589527	Prob > F = 0.2822 R-squared = 0.0384 Adj R-squared = 0.0064
Total	822.375		.5282258	Root MSE = 5.1341
employ96		Std. Err	. t P> t	[95% Conf. Interval]
value _cons	-3.87234 8.745292	3.536306 3.044999	-1.095 0.282 2.872 0.007	-11.09444 3.349761 2.526574 14.96401

Locksmiths (1999)

The 1999 data set for Locksmiths is very small and lacks a Yellow Pages advertisement size variable. When this WCC rating was published, staff resources were no longer available to collect the relevant Yellow Pages data. In addition, WCC did not provide firm size data for Locksmiths. In Regression 1, the WCC price index is seen to be negatively correlated with the WCC quality index.

Regression 1:	Dependent Va Independent		-	-	r	
Logit estimate	es				of firms =	25
				Prob >	chi2 =	0.0031
Log likelihood = -280.46412 Pseudo R2 = 0.0175						
		(standard e	errors adj	usted for	clustering	on idno99)
		Robust				
supq	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
price99	0459347	0155294	-2.96	0 003	0763717	0154977
cons		1.594268	3.75		2.854279	9.103695
			J./J		2.034279	9.103095

Major Appliance Repair (1996)

This data set includes variables for price, firm size and size of Yellow Pages ad. As is evident in regressions 1-3, all of these variables are strongly and negatively associated with quality. Further analysis (not shown) revealed no correlation between the Yellow Pages variable and value as measured by quality adjusted for price. In Regression 4, the value variable is negatively correlated with firm size (as measured by number of employees). It should be noted that there is a high degree of direct intercorrelation among the independent variables in this data set. This can be seen in Regression 5, where none of the variables displays a significant coefficient when all are included in the same regression predicting quality.

Regression 1: Dependent Variable = %rating firm adequate or superior Independent Variable = WCC price index

Logit estimate Log likelihood			= = =	46 25.84 0.0000 0.0411			
 supg	Coef	standard err Robust Std. Err.	rors adju 	P> z			n comidno)
price96 cons	0473062	.0093066 1.048761	-5.08 6.87	0.000	065546	8	0290657 9.264364

Regression 2: Dependent Variable = %rating firm adequate or superior Independent Variable = number of employees								
Logit estimates	Number of firms = 54 Wald chi2(1) = 23.43 Prob > chi2 = 0.0000			23.43				
Log likelihood =	-642.45782	!		Pseudo	R2	=	0.0513	
	(standard errors adjusted for clustering on comidno)							
 supq 	Coef.	Robust Std. Err.	Z	P> z	[95% C	Conf.	Interval]	
employ96 _cons	0778501 2.7201		-4.84 12.89	0.000	10937 2.3065	703 594	0463299 3.133606	
Regression 3: D I	-	riable = %ra Variable = s	-	_		perio	r	
Logit estimates							35	
				Wald d Prob >	chi2(1)	=	6.74 0.0095	
Log likelihood =	-1005.0842	1					0.0203	
(standard errors adjusted for clustering on comidno)								
		Robust Std. Err.						
yp96	0253057	.0097507	-2.60	0.009	04441	67		12.89

Regression 5:		Variable =		s, WCC pr	e or superio ice index, s	
Logit estimate	S			Number	of firms =	23
				Wald c	:hi2(3) =	2.32
				Prob >	chi2 =	0.5093
Log likelihood	= -214.21189	9		Pseudo	R2 =	0.0043
		(standard er: Robust	rors adju 	sted for	clustering o	n comidno)
supq	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
employ96	024605	.0360032	-0.68	0.494	0951699	.0459599
price96	0134052	.0185372	-0.72	0.470	0497375	.0229271
yp96	.008471	.0205447	0.41	0.680	0317959	.048738
_cons	4.198566	1.760559	2.38	0.017	.7479346	7.649198

Movers Local) (1998)

This data set lacks information on firm size, but does include the Yellow Pages ad size variable. In addition, a dummy variable is used to identify firms that are agents for national moving company chains. This permits a test of the hypothesis that consumers can rely on a firm's status as an agent to signal higher quality. Two price variables are used in the regressions that follow. The first is the usual WCC price index, which in this sample was only available for 22 firms. The second is a firm's hourly wage rate for a crew of 3 during peak moving season, which was available for 26 firms.

Regressions 1 and 2 find no significant correlation between price and quality using either price measure. In Regression 3, Yellow Page ad size is not associated with quality. Further analysis (not shown) revealed that the Yellow Pages variable was not related to value as measured by the WCC quality score divided by the WCC price index or the hourly wage rate variable

Finally, Regression 4 shows that agents for national chains did not receive higher ratings than independent firms. The coefficient for the agent dummy is negative, although it does not achieve significance.

Regression 1:	Dependent Va Independent	ariable = %ra Variable = W			or			
Logit estimate	es			Wald o	r of firms = chi2(1) = > chi2 =	0.00		
Log likelihood	d = -338.9951	2			o R2 =			
					clustering o			
supq	Coef.	Robust Std. Err.	Z		[95% Conf.			
	.0001009 1.06614	.0163045 1.616056	0.01 0.66	0.995 0.509	0318552 -2.101272	.0320571 4.233553		
Regression 2: Dependent Variable = %rating firm superior Independent Variable = hourly wage rate, crew of 3								
Logit estimate		1		Wald o Prob :	r of firms = chi2(1) = > chi2 = p R2 =	1.53 0.2163		
			ors adiu		clustering o			
					-			
supq	1	Debugt						
hour398	 Coef.	Robust Std. Err. .0161001	z 1.24	P> z 0.216	[95% Conf. 	Interval] .0514638		
hour398	Coef. +	Robust Std. Err. .0161001 1.643322	z 1.24 -0.54	P> z 0.216 0.588	[95% Conf. 0116475 -4.110533	Interval] .0514638		
hour398 _cons	Coef. .0199081 8896816 	Robust Std. Err. .0161001 1.643322 ariable = %ra	z 1.24 -0.54 	P> z 0.216 0.588 cm superio fellow Pag Number Wald o	[95% Conf. 0116475 -4.110533 	Interval] .0514638 2.33117 		
hour398 _cons	Coef. 0199081 8896816 	Robust Std. Err. .0161001 1.643322 	z 1.24 -0.54 	P> z 0.216 0.588 cm superio fellow Pag Number Wald o	[95% Conf. 0116475 -4.110533 	Interval] .0514638 2.33117 		
hour398 _cons 	Coef. 0199081 8896816 	Robust Std. Err. .0161001 1.643322 	z 1.24 -0.54	P> z 0.216 0.588 cm superio Yellow Pag Number Wald o Prob 3 Pseudo	[95% Conf. 0116475 -4.110533 	Interval] .0514638 2.33117 		
hour398 _cons 	Coef. 0199081 8896816 	Robust Std. Err. .0161001 1.643322 	z 1.24 -0.54	P> z 0.216 0.588 cm superio Yellow Pag Number Wald o Prob 3 Pseudo	[95% Conf. 0116475 -4.110533 	Interval] .0514638 2.33117 		

_ _

Regression 4:	-	ariable = %r: Variable = ;	-	-			
Logit estimate	S			Number	of firm	ns =	30
				Wald cl	ni2(1)	=	0.37
				Prob >	chi2	=	0.5431
Log likelihood	= -425.221	2		Pseudo	R 2	=	0.0024
		(standard er	rors adju	sted for a	clusteri	ing or	n comidno)
		Robust					
supq	Coef.	Std. Err.	Z	P> z	[95% C	Conf.	Interval]
agent98	2566645	.42205	-0.61	0.543	-1.0838	367	.5705383
_cons	1.09089	.1886116	5.78	0.000	.72121	83	1.460562

Pest Control Firms (1997)

The Pest Control data set contains information on firm size and Yellow Pages ad size, as well as two other variables that permit testing of signaling hypotheses. The first is a dummy variable identifying firms that are part of national chains. The second is a variable representing the

¹ This three-part measure consists of (1) a firm's estimated charge for the first treatment of a sample house, (2) the length of period during which the firm will perform a free follow-up treatment, and (3) the estimated charge for treatment after the free followup period. Various alternative specifications were constructed by compiling a composite index that weighted the initial treatment charge by the length of free followup period, and combined this with the charge after the followup period. All such composite measures were either negatively correlated with quality or uncorrelated. In any event, it is not clear which, if any, of the tested specifications is most appropriate, particularly since it is impossible to estimate expected total costs without firmspecific knowledge of the probability that followup treatments will be needed.

correlation between satisfaction and firm status as a member of a national chain. For the final signaling hypothesis, Regression 7 indicates that consumers cannot rely on the length of the warranty period for the initial treatment as a predictor of satisfaction. There is a significant negative correlation between these two variables.

All of the signaling variables are included as predictors of satisfaction in Regression 8. With the exception of size of Yellow Pages ad, all of the variables are significant and retain the same sign as displayed in the simple two way regression. Further analysis showed that the Yellow Pages variable is highly correlated with chain status (r=.52), and loses its explanatory power when both variables are used as predictors.

Regression 1: Dependent Variable = %rating firm superior Independent Variable = termite inspection charge

Logit estimate	s			Number Wald c	of firms hi2(1)		51 16.96
							0.0000 0.0173
		(standard erro	ors adju	sted for	clustering	g or	n comidno)
supq	Coef.	Robust Std. Err.	Z	P> z	[95% Co	nf.	Interval]
chgter97	.0235317	.0057148	4.12	0.000	.012330	9	.0347325

Regression 3: Dependent Variable = %rating firm superior Independent Variable = size of Yellow Pages ad

Logit estimate	28			Wald	r of firms chi2(1) > chi2	= 51 = 12.23 = 0.0005
Log likelihood = -1512.4115 Pseudo R2 = 0.0219						
		(standard er	rors adjı	usted for	clustering	g on comidno)
supq	Coef.	Robust Std. Err.	Z	P> z	[95% Cor	nf. Interval]
yp97 _cons	0125807 .792496	.0035981	-3.50 3.86	0.000	0196328	

Regression 4: Dependent Variable = size of Yellow Pages ad Independent Variable = value (quality/price)

Source	SS	df 	MS		Number of firms = 48 F(1, 46) = 8.75
Model Residual + Total	5469.12685 28742.3614 34211.4883	46 624.8	.12685 333944 904006		Prob > F = 0.0049 R-squared = 0.1599 Adj R-squared = 0.1416 Root MSE = 24.997
yp97		Std. Err.		P> t	[95% Conf. Interval]
value _cons		7.632881 10.37279	-2.959 5.291	0.005	-37.94634 -7.217952 34.00205 75.76072

Regression 5: Dependent Variable = number of employees Independent Variable = value (quality/price)

Source	SS	df	MS		Number of firms = 51 F(1, 49) = 4.45
Model Residual + Total	66.4344209 731.920183 798.354604	1 66.4 49 14.9	344209 371466 		F(1, 49) = 4.45 Prob > F = 0.0401 R-squared = 0.0832 Adj R-squared = 0.0645 Root MSE = 3.8649
÷ 1	Coef.		t	P> t	[95% Conf. Interval]
value _cons	-2.453904 8.672254	1.163576 1.55833	-2.109 5.565	0.040	-4.7921981156102 5.540673 11.80383

Regression 6: Dependent Variable = %rating firm superior Independent Variable = chain status (chain=1)

Plumbers (1995)

The 1995 data set for Plumbers contains variables for size of firm and Yellow Pages ad. The dependent variable, however, is the less sensitive overall satisfaction measure that combines superior and adequate ratings. A dummy variable was also constructed to identify members of a national chain (of which there was only one.) Analysis (not shown) revealed that this variable was unrelated to consumer satisfaction or to any of the other independent variables.

Regression 1 shows a strong negative correlation between price and quality. Regression 2 reveals a similarly strong negative relationship between quality and firm size. In Regression 3, there is an even more systematic negative relationship between size of Yellow Pages ad and quality. Regression 4 shows that Yellow Pages ad size cannot be used to identify firms providing particularly good value in terms of price-adjusted quality. This reflects a positive correlation between the Yellow Pages variable and price (r=.390). Value is also negatively correlated with firm size, as shown in Regression 5. Finally, Regression 6 reveals that the Yellow Pages variable demonstrates the greatest predictive power in a regression that employs all of the independent variables. This suggests that Yellow Pages ad size is not merely functioning as a proxy for price or firm size in this data set.

Regression 1: Dependent Variable = %rating firm superior or adequate Independent Variable = WCC price index

Logit estimates		Number of firms Wald chi2(1)	= 134 = 7.37
Log likelihood = -16	557.9036	Prob > chi2 Pseudo R2	= 0.0066 = 0.0083
	(standard errors	adjusted for clustering	g on comidno)
 supq +	Robust Coef. Std. Err.	z P> z [95% Con	nf. Interval]

Regression 2: Dependent Variable = %rating firm superior or adequate Independent Variable = number of employees

Logit estimates

Number of firms = 137

Regression 5: Dependent Variable = number of employees Independent Variable = value (quality/price)

Source	SS	df	MS	Number of firms = 133	
+-				F(1, 131) = 11.45	
Model	2268.99974	1	2268.99974	Prob > F = 0.0009	
Residual	25955.7296	131	198.13534	R-squared = 0.0804	
SourCoef	.urcetd. Err.3	34	t > t(Sourc[95%rConf.uInterari] -T1_1 w	133)Tj 0

R6gression 5:	Dependent V%rating Numb s	superio r ade	te employees	
	Independent VWCC (qua i(x, size Yello	ow PagesSourc =	1s)Tj 70 -urcccc

coefficients. WCC did not collect firm size data for restaurants, and Yellow Pages ad size data were not collected due to resource constraints and the perceived low probability that such a variable would be correlated with quality in this industry.

Shoe Repair (1995)

The Shoe Repair data set for 1995 contains price and quality information for 95 firms. Although WCC did not collect information on firm size, the data set does contain a Yellow Pages ad size variable. Regression 1 shows a negative but not quite significant negative correlation

Supermarkets (2001)

The Supermarkets data set for 2001 includes only 8 firms, but over 10,000 respondents provided ratings based on experiences at dozens of individual stores. Regression 1 shows a very strong positive correlation between price and quality in this industry.

Regression 1: Dependent Variable = % rating store superior Independent Variable = WCC price index

Logit estimates			Number	r of cha	ains =	8	
				- ()	=		
Log likelihood = -6870.3591				> chi2 o R2	=		
$\log \operatorname{IIREIINO00} = -0070.3591$			Pseudo	J RZ	=	0.0337	
	(standard	errors a	adjusted f	for clus	stering	on idno)	
supq Coef.	Robust Std. Err. Robust	Z	P> z	[95%	Conf. :	Intee Conf.	Intal]w O

Tree Experts (1999)

The 1999 data set for Tree Experts is limited to information on price and quality. WCC could not provide firm size data, and resources were no longer available to collect Yellow Pages ad size data. Regression 1 shows no significant correlation between price and quality.

Regression 1: Dependent Variable = %rating firm superior Independent Variable = WCC price index

Logit estimates				Number Wald c Prob >	, ,	29 0.70 0.4029`
Log likelihood =	-505.6894	Ł		Pseudo	R2 =	0.0031
		(standard	errors a	djusted for	clustering	on idno99)
 pqua	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
price99 _cons	.0069715 .6667981	.008334 .8065977	0.84	0.403 0.408	0093627 9141043	.0233058 2.247701

Watch Repair (1996)

The 1996 data set for Watch Repair contains information on Yellow Pages ad size, but not firm size. In Regression 1, The WCC quality ratings and the WCC price index are uncorrelated. Similarly, in Regression 2, there is no significant relationship between quality and size of Yellow Pages ad. Further analysis (not shown) failed to find any significant correlation between the Yellow Pages variable and price or value (quality divided by price).

Regression 1: Dependent Variable = %rating firm superior Independent Variable = WCC price index

Logit estimates				of firms =	41
			Wald c	. ,	0.12
			Prob >	chi2 =	0.7321
Log likelihood = -622.3901	7		Pseudo	R2 =	0.0002
	(standard	errors ad	ljusted for	clustering	on idno96)
	Robust				
supq Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
++					
price96 0018618	.0054376	-0.34	0.732	0125193	.0087958
_cons 1.371141	.5230825	2.62	0.009	.3459186	2.396364
·					

Regression 2:	Dependent Va Independent		-	-			
Logit estimate	S			Number	r of obs	=	37
				Wald o	chi2(1)	=	0.01
				Prob :	> chi2	=	0.9065
Log likelihood	= -707.40833	3		Pseudo	5 R2	=	0.0000
		(standard e	rrors adj 	usted for	r cluster	ing (on idno96)
supq	Coef.	Robust Std. Err.	Z	P> z	[95% C	onf.	Interval]
+ ур96	0093096	.0792308		0.906	16459	 91	.1459799
_cons	1.191147	.1316236	9.05	0.000	.9331	69	1.449124