

maximizes $E(\pi | m) - d m$. The marginal condition is $E(\pi | m^*) - E[\pi | (m^* - 1)]^2 d$ and $E[\pi | (m^* + 1)] - E(\pi | m^*) < d$. For simplicity, we treat m as a continuous variable and write the marginal condition as $\partial E(\pi)/\partial m = d$. In Figure 1 we depict the graph of the "smoothed" marginal valuation function along with the marginal cost of information. The level of information m* maximizes expected profit net of the cost of information. At m* the residual demand mean square forecast error is Var(e) + $\sum_{i=m^*+1}^{n} a_i^2 Var(X_i)$. The greater is the quantity of information the smaller is the forecast error. Minimum mean square forecast error is Var(e), since e is unobservable.

Optimal Information and Firm Size

The optimal level of information, m*, depends on the size of the dominant firm. We now consider how m* changes as the dominant firm's share grows. Specifically,

(8)
$$\partial \{E(\pi|m) - E[\pi|(m-1)]\} / \partial t = -c(bc-r)^2[(bc-r)^2]$$

 $- 3t^2]/2t^2[(bc-r)^2-t^2]^2.$

The sign of (8) depends on the sign of $[(bc-r)^2-3t^2]$.⁸ If the dominant firm's share is sufficiently large, $[(bc-r)^2-3t^2]<0$, and (8) would be positive. Intuitively, when t is small most of the marginal gain from information acquisition accrues to the fringe, which free rides in a price leadership model. We presume that for a single firm to achieve the status of dominant firm or price leader it must have substantial market share. Thus, focus-