_ E

- Lots of interest has focused on creation and regulation of health insurance markets (exchanges)
 - A¤ordable Care Act (ACA) in United States (2010)
 - Netherlands (2006), Switzerland (1996), Private market in Germany
 - Private employer exchanges GermTem42l89 0 Td [(Germa)-1(n)1(yrm

• Ongoing work in US congress replacing the ACA

- (some) relates to market rules
- proposals by di¤erent Republicans
 - Better Way: Paul Ryan, Patient Care Act: Orrin Hatch, Empowering Patients First Act: Thomas Price, Health Care Choice Act: Ted Cruz, Healthcare Accessibility, Empowerment, and Liberty Act: William Cassidy and Peter Sessions
- All proposals include repealing participation mandate
 - mandate intended to prevent market unravelling
 - but perceived as infringing freedom
- Some proposals remove ban on pricing of pre-existing conditions

- Market design (rules) needed to contend with two potential problems:
 - or two risks: i. type (conditions), ii. medical costs given type
- Reclassi...cation risk (RR)
 - If health conditions priced
 - individuals face risk of changing health type
 - leading to potentially high premiums at bad times
- Adverse section (AS)
 - if charged average premiums, healthy individuals may opt out, leading to premium increase...
 - standard Akerlof lemons inet ciency
 - may even lead to the collapse of the market

- Tension between: AS and RR
- AS can be contended with by pricing of health condition
 - individualized prices (rather than average) can eliminate adverse selection
 - less adverse selection, implies more trade, higher welfare
- But pricing health conditions leads to more premium uncertainty
 - exacerbating RR, lowers welfare
- Relates to notion of insurance
 - two risks

- Most regulations stipulate one-year contracts
- Longer contracts, as in private German HI market, might improve welfare
- Long-term contracts might:
 - eliminating AS through health based pricing
 - while insuring RR through commitment to future policy terms

Policy

- All Republican proposals eliminate the mandate
 - there is no penalty for not participating
- Instead they propose:
 - penalties while returning to the market
 - House of Representatives bill: 30% penalty for non-continuous coverage
 - Senate bill penalizes with 6 months exclusion when back
- Both alternatives, to enhance participation, create dynamics:
 - although contracts are yearly
 - current consumer behavior a ects future payo as
 - thus, ...nding demand and equilibrium, entails a DP problem
- Policy question: problemequ1Tf1.69of()Tj/TT01Tf3.6960Td[pa)273

• One can simulate equilibria and compute welfare, in all 3 set -ups:

- one period contracts with di¤erent pricing rules
- one period contracts with rules generating demand dynamics

< 3 > < 3 >

- long term contracts
- Data needed:
 - distribution of health types ("health state")
 - distribution of costs given types
 - health state transitions (from year to year)
 - preferences toward risk (parameter)

1 1 1

- We treat the large employer as the population in the exchange
- Having an ACG score for each person, we basically observe distribution of risk types
 - the distribution of types is data, rather than estimated
- Use ACG changes over time to estimate health transitions
- Estimate distribution of realized medical costs given ACG
 - re‡ects uncertainty faced by each type
- Risk preferences
 - Choice Model in Handel, Hendel, Whinston (2015)
 - Comparable choices in the literature: Collier et al. (2017)

From the Data to the Simulations

- For each person in population we know:
 - risk type (ACG)
 - estimated risk preference (CARA parameter)
 - estimated distribution of costs given ACG (uncertainty faced)
- With: type, uncertainty and risk preferences
 - compute expected utility from an insurance policy with Actuarial Value (AV) x: EU_{X} ACG

Image: Image:

- Knowing expected utility, we get willingness to pay for any level of coverage as:
 - e.g., WTP for a 60% policy is: $_{60}$ EU₆₀ ACG \Box EU₀ ACG
- Compute WTP for every person in the population (given their ACG and age)
 - which represents demand for such policy

	Sample Total Health Expenditure Statistics						
Ages	Mean	S. D.	S. D. of ACG	S. D. around ACG			
All	6,099	13,859	6,798	9,228			
25-30	3,112	9,069	4,918	5,017			
30-35	3,766	10,186	5,473	5,806			
35-40	4,219	10,753	5,304	6,751			
40-45	5,076	12,008	5,942	7,789			
45-50	6,370	14,095	6,874	9,670			
50-55	7,394	15,315	7,116	11,092			
55-60	9,175	17,165	7,414	13,393			
60-65	10,236	18,057	7,619	14,366			

AGE:			Health States:				
	1	2	3	4	5	6	7
25-30	0.49	0.19	0.14	0.07	0.04	0.03	0.04
30-35	0.41	0.18	0.13	0.08	0.06	0.06	0.07
35-40	0.27	0.30	0.13	0.06	0.09	0.07	0.09
40-45	0.19	0.28	0.16	0.09	0.12	0.08	0.10
45-50	0.01	0.15	0.32	0.15	0.13	0.12	0.12
50-55	0.00	0.10	0.25	0.19	0.15	0.16	0.15
55-60	0.00	0.01	0.01	0.25	0.24	0.28	0.22
60-65	0.00	0.00	0.00	0.18	0.24	0.26	0.31

æ

* ロ > * 個 > * 注 > * 注 >

Health State Transitions: 30-35 year olds

				t 1			
	1	2	3	4	5	6	7
_t = 1	0.72	0.13	0.05	0.05	0.02	0.01	0.03
t = 2	0.35	0.25	0.12	0.11	0.04	0.03	0.11
t = 3	0.15	0.23	0.19	0.15	0.10	0.08	0.10
t = 4	0.20	0.08	0.12	0.24	0.18	0.12	0.08
t = 5	0.10	0.10	0.05	0.20	0.20	0.20	0.15
t = 6	0.16	0.11	0.14	0.11	0.08	0.22	0.19
_t = 7	0.11	0.11	0.07	0.04	0.11	0.20	0.37

æ

· · · · · · · · ·

t

Health State Transitions: 50-55 year olds

				t 1			
	1	2	3	4	5	6	7
_t = 1	0.67	0.15	0.10	0.02	0.02	0.01	0.03
t = 2	0.25	0.37	0.20	0.09	0.04	0.02	0.04
t = 3	0.09	0.21	0.21	0.20	0.12	0.10	0.08
t = 4	0.10	0.19	0.26	0.12	0.10	0.19	0.05
t = 5	0.09	0.19	0.14	0.15	0.10	0.19	0.15
t = 6	0.00	0.09	0.13	0.09	0.19	0.23	0.28
_t = 7	0.03	0.10	0.10	0.10	0.21	0.16	0.29

Image: Image:

- 4 3 6 4 3 6

Health State Persistence starting at age 30

э

From the Theory to the Simulations

Solution Concepts

۲

æ

PART I

One-period Contracts: Pricing Rules

- We ...nd that markets fully unravel if only age is priced
 - like in the ACA
- We estimated: cost of AS (namely, of underinsurance) under Obamacare (ACA) is about \$600 per person/year
- If health conditions are priced
 - trade increases, some individuals get high level of coverage (90% Actuarial Value)
 - so AS is reduced (but in a very limited way)
- Downside: premiums become uncertain (over time), creating RR

Part I: One-Period Contracts

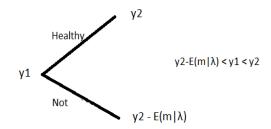
Handel, Hendel and Whinston (2015)

	Q1	Q2	Q3	Q4
Ages	Share 90	Share 90	Share 90	Share 90
All	35.2	0	0	0
25-29	63	25	0	0
30-34	63	42	0	0
35-39	52	50	0	0
40-44	38	0	0	0
45-49	63	18	0	0
50-54	27	0	0	0
55-59	33	0	0	0
60-65	0	0	0	0

Igal Hendel (Northwestern University) ()

Health Insurance Market Design

22 / 39


PART II

Long-Term Contracts

・ロト ・聞ト ・ ヨト ・ ヨト

- Firms can oxer long term contracts
 - like in German private health insurance market or US life insurance
- Consumers can lapse any time, without termination fees
- Competitive equilibrium maximizes consumer welfare, breaking even ex-ante
 - o¤ering contracts that are "lapsation-proof"

Simplest Example One Sided Commitment: 2 periods, 2 (second period) states

- ∢ ∃ ▶

- T periods, U E $t^{t} u c_{t}$
 - T 40, from age 25 to 65 (Medicare)
- Individual income in period t: yt
- Health state t (ACG), summarizes expected health costs, E m_t t
- Health expenses m_t and t_{-1} determined by density $f_t m_t$, $t_{-1} t_{-1}$
 - the transitions just showed youcome

Health State Transitions: 30-35 year olds

				t 1			
	1	2	3	4	5	6	7
_t = 1	0.72	0.13	0.05	0.05	0.02	0.01	0.03
t = 2	0.35	0.25	0.12	0.11	0.04	0.03	0.11
t = 3	0.15	0.23	0.19	0.15	0.10	0.08	0.10
t = 4	0.20	0.08	0.12	0.24	0.18	0.12	0.08
t = 5	0.10	0.10	0.05	0.20	0.20	0.20	0.15
t = 6	0.16	0.11	0.14	0.11	0.08	0.22	0.19
_t = 7	0.11	0.11	0.07	0.04	0.11	0.20	0.37

æ

· · · · · · · · ·

t

- The key ingredients are: health status and transitions over time, risk preferences
- Age dependent annual transitions across a 7 health-state partition (using 5-year bins)
- We use estimated risk preferences from HHW (2015) choice model: CARA with population mean $_i = 4.39 \ \Box 10^{\Box 4}$
- 0.975

• With those parameters, ...nd optimal contracts, and welfare

	Certainty Equivalent						
Income	C□ NB	CEs	CED	CEACA			
Flat-net	53.67	52.47	53.62	52.85			
Manager	47.20	46.41	46.94	46.80			

1 1 E

PART III

One-period contracts: Republican's

• Ghili, Hendel and Whinston (2017) go back to static contracts

- ...rms o¤er one-period contracts
- with no pricing of health conditions
- but penalties for lack of continuous coverage
- Simulate:
 - House of Representatives proposal: 30% premium increase for returning buyers
 - Senate proposal: 6 months without coverage, EU₀ ACG
- Unlike the mandate, both options generate consumer dynamics

- \bullet For a given p we ...nd V_a , $\ p$
- $\bullet~V_a~$, ~p~ and p determine participation and insurer's cost for every a
- Update p such that insurers break for every a
- \bullet Update V_a , $\ p$ for new p
- Iterate
 - not a contraction, need not converge, it did so far
- Equilibrium involves: consumers optimizing and ...rms breaking even

1 1 E

- Plenty can be simulated
- Treating health insurance policies as ...nancial instruments
 - non-...nancial components can be accommodated
- Using data ...rms are increasingly willing to share (e.g., Alcoa, Microsoft)
- Ideally, governments would be willing to collect and share
- ACG software extremely useful
 - replacing parametric assumptions in prior literature with data
 - same data/information used by market participants