
50 Ways to Leak Your Data: 
An Exploration of Apps' Circumvention of the Android Permissions System 

Joel Reardon Álvaro Feal Primal Wijesekera 
University of Calgary IMDEA Networks Institute U.C. Berkeley / ICSI 

AppCensus, Inc. Universidad Carlos III de Madrid 

Amit Elazari Bar On Narseo Vallina-Rodriguez Serge Egelman 
U.C. Berkeley IMDEA Networks Institute / ICSI U.C. Berkeley / ICSI 

AppCensus, Inc. AppCensus, Inc. 

Abstract 

Modern smartphone platforms implement permission-based 
models to protect access to sensitive data and system re-
sources. However, apps can circumvent the permission model 
and gain access to protected data without user consent by us-
ing both covert and side channels. Side channels present in 
the implementation of the permission system allow apps to 
access protected data and system resources without permis-
sion; whereas covert channels enable communication between 
two colluding apps so that one app can share its permission-
protected data with another app lacking those permissions. 
Both pose threats to user privacy. 

In this work, we make use of our infrastructure that runs 
hundreds of thousands of apps in an instrumented environ-
ment. This testing environment includes mechanisms to mon-
itor apps' runtime behaviour and network traf�c. We look for 
evidence of side and covert channels being used in practice 
by searching for sensitive data being sent over the network 
for which the sending app did not have permissions to access 
it. We then reverse engineer the apps and third-party libraries 
responsible for this behaviour to determine how the unautho-
rized access occurred. We also use software �ngerprinting 
methods to measure the static prevalence of the technique that 
we discover among other apps in our corpus. 

Using this testing environment and method, we uncovered a 
number of side and covert channels in active use by hundreds 
of popular apps and third-party SDKs to obtain unauthorized 
access to both unique identi�ers as well as geolocation data. 
We have responsibly disclosed our �ndings to Google and 
have received a bug bounty for our work. 

1 Introduction 

Smartphones are used as general-purpose computers and 
therefore have access to a great deal of sensitive system re-
sources (e.g., sensors such as the camera, microphone, or 
GPS), private data from the end user (e.g., user email or con-
tacts list), and various persistent identi�ers (e.g., IMEI). It 

is crucial to protect this information from unauthorized ac-
cess. Android, the most-popular mobile phone operating sys-
tem [75], implements a permission-based system to regulate 
access to these sensitive resources by third-party applications. 
In this model, app developers must explicitly request permis-
sion to access sensitive resources in their Android Manifest 
�le [5]. This model is supposed to give users control in decid-
ing which apps can access which resources and information; 
in practice it does not address the issue completely [30,86]. 

The Android operating system sandboxes user-space apps 
to prevent them from interacting arbitrarily with other run-
ning apps. Android implements isolation by assigning each 
app a separate user ID and further mandatory access controls 
are implemented using SELinux. Each running process of an 
app can be either code from the app itself or from SDK li-
braries embedded within the app; these SDKs can come from 
Android (e.g., of�cial Android support libraries) or from third-
party providers. App developers integrate third-party libraries 
in their software for things like crash reporting, development 
support, analytics services, social-network integration, and ad-
vertising [16,62]. By design, any third-party service bundled 
in an Android app inherits access to all permission-protected 
resources that the user grants to the app. In other words, if an 
app can access the user's location, then all third-party services 
embedded in that app can as well. 

In practice, security mechanisms can often be circum-
vented; side channels and covert channels are two common 
techniques to circumvent a security mechanism. These chan-
nels occur when there is an alternate means to access the pro-
tected resource that is not audited by the security mechanism, 
thus leaving the resource unprotected. A side channel exposes 
a path to a resource that is outside the security mechanism; 
this can be because of a �aw in the design of the security 
mechanism or a �aw in the implementation of the design. A 
classic example of a side channel is that power usage of hard-
ware when performing cryptographic operations can leak the 
particulars of a secret key [42



A covert channel is a more deliberate and intentional effort 
between two cooperating entities so that one with access to 
some data provides it to the other entity without access to 
the data in violation of the security mechanism [43]. As an 
example, someone could execute an algorithm that alternates 
between high and low CPU load to pass a binary message to 
another party observing the CPU load. 

The research community has previously explored the po-
tential for covert channels in Android using local sockets and 
shared storage [49], as well as other unorthodox means, such 
as vibrations and accelerometer data to send and receive data 
between two coordinated apps [3]. Examples of side chan-
nels include using device sensors to infer the gender of the 
user [51]or uniquely identify the user [72]. More recently, 
researchers demonstrated a new permission-less device �n-
gerprinting technique that allows tracking Android and iOS 
devices across the Internet by using factory-set sensor cali-
bration details [90]. However, there has been little research in 
detecting and measuring at scale the prevalence of covert and 
side channels in apps that are available in the Google Play 
Store. Only isolated instances of malicious apps or libraries 
inferring users' locations from WiFi access points were re-
ported, a side channel that was abused in practice and resulted 
in about a million dollar �ne by regulators [82]. 

In fact, most of the existing literature is focused on under-
standing personal data collection using the system-supported 
access control mechanisms (i.e., Android permissions). With 
increased regulatory attention to data privacy and issues sur-
rounding user consent, we believe it is imperative to under-
stand the effectiveness (and limitations) of the permission 
system and whether it is being circumvented as a preliminary 
step towards implementing effective defenses. 

To this end, we extend the state of the art by developing 
methods to detect actual circumvention of the Android per-
mission system, at scale in real apps by using a combination 
of dynamic and static analysis. We automatically executed 
over 88,000 Android apps in a heavily instrumented environ-
ment with capabilities to monitor apps' behaviours at the sys-
tem and network level, including a TLS man-in-the-middle 
proxy. In short, we ran apps to see when permission-protected 
data was transmitted by the device, and scanned the apps to 
see which ones should not have been able to access the trans-
mitted data due to a lack of granted permissions. We grouped 
our �ndings by where on the Internet what data type was sent, 
as this allows us to attribute the observations to the actual app 
developer or embedded third-party libraries. We then reverse 
engineered the responsible component to determine exactly 
how the data was accessed. Finally, we statically analyzed 
our entire dataset to measure the prevalence of the channel. 
We focus on a subset of thedangerous permissions that pre-
vent apps from accessing location data and identi�ers. Instead 
of imagining new channels, our work focuses on tracing ev-
idence that suggests that side- and covert-channel abuse is 
occurring in practice. 

We studied more than 88,000 apps across each category 
from the U.S. Google Play Store. We found a number of side 
and covert channels in active use, responsibly disclosed our 
�ndings to Google and the U.S. Federal Trade Commission 
(FTC), and received a bug bounty for our efforts. 

In summary, the contributions of this work include: 

� We designed a pipeline for automatically discovering vul-
nerabilities in the Android permissions system through 
a combination of dynamic and static analysis, in effect 
creating a scalable honeypot environment. 

� We tested our pipeline on more than 88,000 apps and 
discovered a number of vulnerabilities, which we respon-



study, including the side and covert channels we discovered 
and their prevalence in practice. Section 5 describes related 
work. Section 6 discusses their potential legal implications. 
Section7 discusses limitations to our approach and concludes 
with future work. 

2 Background 

The Android permissions system has evolved over the years 
from an ask-on-install approach to an ask-on-�rst-use ap-
proach. While this change impacts when permissions are 
granted and how users can use contextual information to rea-
son about the appropriateness of a permission request, the 
backend enforcement mechanisms have remained largely un-
changed. We look at how the design and implementation of 
the permission model has been exploited by apps to bypass 
these protections. 

2.1 Android Permissions 

Android's permissions system is based on the security prin-
ciple of least privilege. That is, an entity should only have 
the minimum capabilities it needs to perform its task. This 
standard design principle for security implies that if an app 
acts maliciously, the damage will be limited. Developers must 
declare the permissions that their apps need beforehand, and 
the user is given an opportunity to review them and decide 
whether to install the app. The Android platform, however, 
does not judge whether the set of requested permissions are 
all strictly necessary for the app to function. Developers are 
free to request more permissions than they actually need and 
users are expected to judge if they are reasonable. 

The Android permission model has two important aspects: 
obtaining user consent before an app is able to access any of 
its requested permission-protected resources, and then ensur-
ing that the app cannot access resources for which the user 
has not granted consent. There is a long line of work uncov-
ering issues on how the permission model interacts with the 
user: users are inadequately informed about why apps need 
permissions at installation time, users misunderstand exactly 
what the purpose of different permissions are, and users lack 
context and transparency into how apps will ultimately use 
their granted permissions [24,30,78,86]. While all of these 
are critical issues that need attention, the focus of our work is 
to understand how apps are circumventing system checks to 
verify that apps have been granted various permissions. 

When an app requests a permission-protected resource, the 
resource manager (e.g., LocationManager, WiFiManager, 
etc.) contacts the ActivityServiceManager , which is the 
reference monitor in Android. The resource request originates 
from the sandboxed app, and the �nal veri�cation happens 
inside the Android platform code. The platform is a Java oper-
ating system that runs in system space and acts as an interface 
for a customized Linux kernel, though apps can interact with 

the kernel directly as well. For some permission-protected 
resources, such as network sockets, the reference monitor is 
the kernel, and the request for such resources bypasses the 
platform framework and directly contacts the kernel. Our 
work discusses how real-world apps circumvent these system 
checks placed in the kernel and the platform layers. 

The Android permissions system serves an important pur-
pose: to protect users' privacy and sensitive system resources 
from deceptive, malicious, and abusive actors. At the very 
least, if a user denies an app a permission, then that app should 
not be able to access data protected by that permission [24,81]. 
In practice, this is not always the case. 

2.2 Circumvention 

Apps can circumvent the Android permission model in differ-
ent ways [3,17,49,51,52,54,70,72,74]. The use of covert and 
side channels, however, is particularly troublesome as their 
usage indicates deceptive practices that might mislead even 
diligent users, while underscoring a security vulnerability in 
the operating system. In fact, the United State's Federal Trade 
Commission (FTC) has �ned mobile developers and third-
party libraries for exploiting side channels: using the MAC ad-



(b) side channel

(a) covert channel

access
allo

w
 

d
en

y
access

security mechanism

Figure 1: Covert and side channels. (a) A security mechanism 
allows app1 access to resources but denies app2 access; this is 
circumvented by app2 using app1 as a facade to obtain access 
over a communication channel not monitored by the security 
mechanism. (b) A security mechanism denies app1 access 
to resources; this is circumvented by accessing the resources 
through a side channel that bypasses the security mechanism. 

being protected by the same permission. A classical example 
of a side channel attack is the timing attack to ex�ltrate an 
encryption key from secure storage [42]. The system under 
attack is an algorithm that performs computation with the key 
and unintentionally leaks timing information—i.e., how long 
it runs—that reveals critical information about the key. 

Side channels are typically an unintentional consequence of 
a complicated system. (“Backdoors” are intentionally-created 
side channels that are meant to be obscure.) In Android, a 
large and complicated API results in the same data appear-
ing in different locations, each governed by different access 
control mechanisms. When one API is protected with permis-
sions, another unprotected method may be used to obtain the 
same data or an ersatz version of it. 

2.3 App Analysis Methods 

Researchers use two primary techniques to analyze app be-
haviour: static and dynamic analysis. In short, static analysis 
studies software as data by reading it; dynamic analysis stud-
ies software as code by running it. Both approaches have the 

goal of understanding the software's ultimate behaviour, but 
they offer insights with different certainty and granularity: 
static analysis reports instances of hypothetical behaviour; 
dynamic analysis gives reports of observed behaviour. 

Static Analysis Static analysis involves scanning the code 



requires building an instrumentation framework for possible 
behaviours of interest a priori and then engineering a system 
to manage the endeavor. 

Nevertheless, some apps are resistant to being audited when 
run in virtual or privileged environments [12,68]. This has 
led to new auditing techniques that involve app execution on 
real phones, such as by forwarding traf�c through a VPN in 
order to inspect network communications [44,60,63]. The 
limitations of this approach are the use of techniques robust 
to man-in-the-middle attacks [28,31,61] and scalability due 
to the need to actually run apps with user input. 

A tool to automatically execute apps on the Android plat-
form is the UI/Application Exerciser Monkey [6]. The Mon-
key is a UI fuzzer that generates synthetic user input, ensuring 
that some interaction occurs with the app being automatically 
tested. The Monkey has no context for its actions with the UI, 
however, so some important code paths may not be executed 
due to the random nature of its interactions with the app. As 
a result, this gives a lower bound for possible app behaviours, 
but unlike static analysis, it does not yield false positives. 

Hybrid Analysis Static and dynamic analysis methods 
complement each other. In fact, some types of analysis bene-
�t from a hybrid approach, in which combining both methods 
can increase the coverage, scalability, or visibility of the anal-
yses. This is the case for malicious or deceptive apps that 
actively try to defeat one individual method (e.g., by using ob-
fuscation or techniques to detect virtualized environments or 
TLS interception). One approach would be to �rst carry out 
dynamic analysis to triage potential suspicious cases, based 
on collected observations, to be later examined thoroughly us-
ing static analysis. Another approach is to �rst carry out static 
analysis to identify interesting code branches that can then be 
instrumented for dynamic analysis to con�rm the �ndings. 

3 Testing Environment and Analysis Pipeline 

Our instrumentation and processing pipeline, depicted and 
described in Figure 

http:practices.We


3.1 App Collection 

We wrote a Google Play Store scraper to download the most-
popular apps under each category. Because the popularity 
distribution of apps is long tailed, our analysis of the 88,113 
most-popular apps is likely to cover most of the apps that peo-
ple currently use. This includes 1,505 non-free apps we pur-
chased for another study [38]. We instrumented the scraper to 
inspect the Google Play Store to obtain application executa-
bles (APK �les) and their associated metadata (e.g., number 
of installs, category, developer information, etc.). 

As developers tend to update their Android software to add 

http:fuzzer.We
http:losophy.We
http:intervention.We


After running the app, the kernel, platform, and network 
logs are collected. The app is then uninstalled along with any 
other app that may have been installed through the process of 
automatic exploration. We do this with a white list of allowed 
apps; all other apps are uninstalled. The logs are then cleared 
and the device is ready to be used for the next test. 

3.3 Personal Information in Network Flows 

Detecting whether an app has legitimately accessed a given re-
source is straightforward: we compare its runtime behaviour 
with the permissions it had requested. Both users and re-
searchers assess apps' privacy risks by examining their re-
quested permissions. This presents an incomplete picture, 
however, because it only indicates what data an app might ac-
cess, and says nothing about with whom it may share it and 
under what circumstances. The only way of answering these 
questions is by inspecting the apps' network traf�c. However, 
identifying personal information inside network transmissions 
requires signi�cant effort because apps and embedded third-
party SDKs often use different encodings and obfuscation 
techniques to transmit data. Thus, it is a signi�cant technical 
challenge to be able to de-obfuscate all network traf�c and 
search it for personal information. This subsection discusses 
how we tackle these challenges in detail. 

Personal Information We de�ne “personal information” 
as any piece of data that could potentially identify a speci�c 
individual and distinguish them from another. Online compa-
nies, such as mobile app developers and third-party advertis-
ing networks, want this type of information in order to track 
users across devices, websites, and apps, as this allows them 
to gather more insights about individual consumers and thus 
generate more revenue via targeted advertisements. For this 
reason, we are primarily interested in examining apps' access 
to the persistent identi�ers that enable long-term tracking, as 
well as their geolocation information. 

We focus our study on detecting apps using covert and side 
channels to access speci�c types of highly sensitive data, in-
cluding persistent identi�ers and geolocation information. No-
tably, the unauthorized collection of geolocation information 
in Android has been the subject of prior regulatory action [82]. 
Table1 shows the different types of personal information that 
we look for in network transmissions, what each can be used 
for, the Android permission that protects it, and the subsec-
tion in this paper where we discuss �ndings that concern side 
and covert channels for accessing that type of data. 

Decoding Obfuscations In our previous work [66], we 
found instances of apps and third-party libraries (SDKs) us-
ing obfuscation techniques to transmit personal information 
over the network with varying degrees of sophistication. To 
identify and report such cases, we automated the decoding 
of a standard suite of standard HTTP encodings to identify 

personal information encoded in network �ows, such as gzip, 
base64, and ASCII-encoded hexadecimal. Additionally, we 
search for personal information directly, as well as the MD5, 
SHA1, and SHA256 hashes of it. 

After analyzing thousands of network traces, we still �nd 
new techniques SDKs and apps use to obfuscate and encrypt 
network transmissions. While we acknowledge their effort 
to protect users' data, the same techniques could be used to 
hide deceptive practices. In such cases, we use a combination 
of reverse engineering and static analysis to understand the 
precise technique. We frequently found a further use of AES 
encryption applied to the payload before sending it over the 
network, often with hard-coded AES keys. 

A few libraries followed best practices by generating ran-
dom AES session keys to encrypt the data and then encrypt 
the session key with a hard-coded RSA public key, sending 
both the encrypted data and encrypted session key together. 
To de-cipher their network transmissions, we instrumented 
the relevant Java libraries. We found two examples of third-
party SDKs “encrypting” their data by XOR-ing a keyword 
over the data in a Viginère-style cipher. In one case, this was 
in addition to both using standard encryption for the data and 
using TLS in transmission. Other interesting approaches in-
cluded reversing the string after encoding it in base64 (which 
we refer to as “46esab”), using base64 multiple times (base-
base6464), and using a permuted-alphabet version of base64 
(sa4b6e). Each new discovery is added to our suite of decod-
ings and our entire dataset is then re-analyzed. 

3.4 Finding Side and Covert Channels 

Once we have examples of transmissions that suggest the 
permission system was violated (i.e., data transmitted by an 
app that had not been granted the requisite permissions to 
do so), we then reverse engineer the app to determine how it 
circumvented the permissions system. Finally, we use static 
analysis to measure how prevalent this practice is among the 
rest of our corpus. 

Reverse Engineering After �nding a set of apps exhibit-
ing behaviour consistent with the existence of side and covert 
channels, we manually reverse engineered them. While the 
reverse engineering process is time consuming and not easily 
automated, it is necessary to determine how the app actually 
obtained information outside of the permission system. Be-
cause many of the transmissions are caused by the same SDK 
code, we only needed to reverse engineer each unique cir-

http:cipher.In
http:libraries.We
http:technique.We
http:sophistication.To


Table 1: The types of personal information that we search for, the permissions protecting access to them, and the purpose for 
which they are generally collected. We also report the subsection in this paper where we report side and covert channels for 
accessing each type of data, if found, and the number of apps exploiting each. The dynamic column depicts the number of apps 
that we directly observed inappropriately accessing personal information, whereas the static column depicts the number of apps 
containing code that exploits the vulnerability (though we did not observe being executed during test runs). 

Data Type Permission Purpose/Use Subsection No of Apps No of SDKs Channel Type 
Dynamic Static Dynamic Static Covert Side 

IMEI READ_PHONE_STATE Persistent ID 4.1 13 159 2 2 2 0 
Device MAC ACCESS_ NETWORK_ STATE Persistent ID 4.2 42 12,408 1 1 0 1 
Email GET_ ACCOUNTS Persistent ID Not Found 
Phone Number READ_PHONE_STATE Persistent ID Not Found 
SIM ID READ_PHONE_STATE Persistent ID Not Found 
Router MAC ACCESS_ WIFI_ STATE Location Data 4.3 5 355 2 10 0 2 
Router SSID ACCESS_ WIFI_ STATE Location Data Not Found 
GPS ACCESS_ FINE_ LOCATION Location Data 4.4 1 1 0 0 0 1 

which data sources. For some particular apps and libraries, 
our work also necessitated reverse engineering C++ code; we 
used IdaPro [1] for that purpose. 

The typical process was to search the code for strings cor-
responding to destinations for the network transmissions and 
other aspects of the packets. This revealed where the data was 
already in memory, and then static analysis of the code re-
vealed where that value �rst gets populated. As intentionally-
obfuscated code is more complicated to reverse engineer, we 

http:strings.We
http:practice.We


Android protects access to the phone's IMEI with the 
READ_

http:permission.We


4.2 Network MAC Addresses 

The Media Access Control Address (MAC address) is a 6-byte 
identi�er that is uniquely assigned to the Network Interface 
Controller (NIC) for establishing link-layer communications. 
However, the MAC address is also useful to advertisers and 
analytics companies as a hardware-based persistent identi�er, 
similar to the IMEI. 

Android protects access to the device's MAC address with 
theACCESS_NETWORK_STATE permission. Despite this, we 
observed apps transmitting the device's MAC address without 

http:permission.To
http:library.We


Table 2: SDKs seen sending router MAC addresses and also containing code to access the ARP cache. For reference, we report 
the number of apps and a lower bound of the total number of installations of those apps. We do this for all apps containing the 
SDK; those apps that do not have ACCESS_WIFI_STATE, which means that the side channel circumvents the permissions system; 
and those apps which do have a location permission, which means that the side channel circumvents location revocation. 

Contact Incorporation Total Prevalance Wi-Fi Permission No Location Permission 
SDK Name Domain Country (Apps) (Installs) (Apps) (Installs) (Apps) (Installs) 

AIHelp cs30.net United States 30 334 million 3 210 million 12 195 million 
Huq Industries huq.io huq.io 



from the photo library, which included the phone's precise 
location in its exchangeable image �le format (EXIF) data. 
The app actually processed the image �le: it parsed the EXIF 
metadata—including location—into a JSON object with la-
belled latitude and longitude �elds and transmitted it to 
their server. 

While this app may not be intending to circumvent the 
permission system, this technique can be exploited by a ma-
licious actor to gain access to the user's location. When-
ever a new picture is taken by the user with geolocation en-
abled, any app with read access to the photo library (i.e., 
READ_EXTERNAL_STORAGE) can learn the user's precise 
location when said picture was taken. Furthermore, it also al-
lows obtaining historical geolocation �xes with timestamps 
from the user, which could later be used to infer sensitive in-
formation about that user. 

5 Related Work 

We build on a vast literature in the �eld o18 0 0 9.9626T53 (o189steHyphe-J254 614.032 Tm
[(li0 9.962l63 637i6)-4250 9l1(10 9nioiast )-b5Wack0 (em
(boutd)-2C 
Androidn)]TJ0litHopicture in)]TJ
EMC r, wthis 



https://search.appcensus.io/


other permissions that, while not labeled as dangerous, can 
still give access to sensitive user data. One example is the 
BLUETOOTH 

https://www.hex-rays.com/products/ida/
https://developer.android.com/guide/topics/manifest/manifest-intro 
https://developer.android.com/guide/topics/manifest/manifest-intro 
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http:Amalfitano,A.R.Fasolino,P.Tramontana,B.D.Ta
http:devices.To


[7] Apktool. Apktool: A tool for reverse engineering 
android apk �les. 
https://ibotpeaches.github.io/Apktool/. 

[8] AppCensus Inc. Apps using Side and Covert Channels. 
https://appcensus.mobi/usenix2019, 2019. 

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, 
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel. 
FlowDroid: Precise Context, Flow, Field, 
Object-sensitive and Lifecycle-aware Taint Analysis for 
Android Apps. In Proc. of PLDI, pages 259–269, 2014. 

[10] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: 
analyzing the android permission speci�cation. In 
Proceedings of the 2012 ACM conference on Computer 
and communications security, pages 217–228. ACM, 
2012. 

[11] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, 
S. Arzt, S. Rasthofer, and E. Bodden. Mining apps for 
abnormal usage of sensitive data. In Proceedings of the 
37th International Conference on Software Engineering-
Volume 1, pages 426–436. IEEE Press, 2015. 

[12] G. S. Babil, O. Mehani, R. Boreli, and M. A. Kaafar. On 
the effectiveness of dynamic taint analysis for protecting 
against private information leaks on android-based 
devices. In 2013 International Conference on Security 
and Cryptography (SECRYPT), pages 1–8, July 2013. 

[13] Baidu. Baidu Geocoding API. https://geocoder. 
readthedocs.io/providers/Baidu.html, 2019. 
Accessed: February 12, 2019. 

[14] Baidu. Baidu Maps SDK. http://lbsyun.baidu. 
com/index.php?title=androidsdk, 2019. 
Accessed: February 12, 2019. 

[15] Bauer, A. and Hebeisen, C. Igexin advertising network 
put user privacy at risk. https: 
//blog.lookout.com/igexin-malicious-sdk, 
2019. Accessed: February 12, 2019. 

[16] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, 
J. Jung, S. Nath, R. Wang, and D. Wetherall. 
Brahmastra: Driving Apps to Test the Security of 
Third-Party Components. In 23rd USENIX Security 
Symposium (USENIX Security 14), pages 1021–1036, 
San Diego, CA, 2014. USENIX Association. 

[17] K. Block, S. Narain, and G. Noubir. An autonomic and 
permissionless android covert channel. In Proceedings 
of the 10th ACM Conference on Security and Privacy in 
Wireless and Mobile Networks, pages 184–194. ACM, 
2017. 

[18] S. Cabuk, C. E. Brodley, and C. Shields. IP covert 
channel detection. ACM Transactions on Information 
and System Security (TISSEC), 12(4):22, 2009. 

[19] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, 
G. Vigna, and Y. Chen. EdgeMiner: Automatically 
Detecting Implicit Control Flow Transitions through 
the Android Framework. In Proc. of NDSS, 2015. 

[20] B. Chess and G. McGraw. Static analysis for security. 
IEEE Security & Privacy, 2(6):76–79, 2004. 

[21] M. Christodorescu and S. Jha. Static analysis of 
executables to detect malicious patterns. Technical 
report, Wisconsin Univ-Madison Dept of Computer 
Sciences, 2006. 

[22] M. Christodorescu, S. Jha, S. A Seshia, D. Song, and 
R. E. Bryant. Semantics-aware malware detection. In 
Security and Privacy, 2005 IEEE Symposium on, pages 
32–46. IEEE, 2005. 

[23] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, 
A. Zand, C. Kruegel, and G. Vigna. 
Obfuscation-resilient privacy leak detection for mobile 
apps through differential analysis. In Proceedings of 
the ISOC Network and Distributed System Security 
Symposium (NDSS), pages 1–16, 2017. 

[24] Commission Nationale de l'Informatique et des 
Libertés (CNIL). Data Protection Around the World. 
https://www.cnil.fr/en/ 
data-protection-around-the-world, 2018. 
Accessed: September 23, 2018. 

[25] Commission Nationale de l'Informatique et des 
Libertés (CNIL). The CNIL's restricted committee 
imposes a �nancial penalty of 50 Million euros against 
Google LLC, 2019. 

[26] Luke Deshotels. Inaudible sound as a covert channel in 
mobile devices. In USENIX WOOT, 2014. 

[27] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, 
P. McDaniel, and A. N. Sheth. TaintDroid: an 
information-�ow tracking system for realtime privacy 
monitoring on smartphones. In Proceedings of the 9th 
USENIX conference on Operating systems design and 
implementation, OSDI'10, pages 1–6, Berkeley, CA, 
USA, 2010. USENIX Association. 

[28] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, 
B. Freisleben, and M. Smith. Why eve and mallory love 
android: An analysis of android ssl (in) security. In 
Proceedings of the 2012 ACM conference on Computer 
and communications security, pages 50–61. ACM, 2012. 

15 

https://ibotpeaches.github.io/Apktool/
https://appcensus.mobi/usenix2019
https://geocoder.readthedocs.io/providers/Baidu.html
https://geocoder.readthedocs.io/providers/Baidu.html
http://lbsyun.baidu.com/index.php?title=androidsdk
http://lbsyun.baidu.com/index.php?title=androidsdk
https://blog.lookout.com/igexin-malicious-sdk
https://blog.lookout.com/igexin-malicious-sdk
https://www.cnil.fr/en/data-protection-around-the-world
https://www.cnil.fr/en/data-protection-around-the-world


[29] P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, M. Conti, 
and M. Rajarajan. Evaluation of android anti-malware 
techniques against dalvik bytecode obfuscation. In 
Trust, Security and Privacy in Computing and 
Communications (TrustCom), 2014 IEEE 13th 
International Conference on, pages 414–421. IEEE, 
2014. 

[30] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and 
D. Wagner. Android permissions: user attention, 
comprehension, and behavior. In Proceedings of the 
Eighth Symposium on Usable Privacy and Security, 
SOUPS '12, page 3, New York, NY, USA, 2012. ACM. 

https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
https://play.google.com/about/monetization-ads/ads/ad-id/
https://play.google.com/about/monetization-ads/ads/ad-id/
https://gist.github.com/epixoip/6ee29d5d626bd8dfe671a2d8f188b77b
https://gist.github.com/epixoip/6ee29d5d626bd8dfe671a2d8f188b77b


[51] Y. Michalevsky, D. Boneh, and G. Nakibly. Gyrophone: 
Recognizing speech from gyroscope signals. In 
USENIX Security Symposium, pages 1053–1067, 2014. 

[52] Y. Michalevsky, A. Schulman, G. A. Veerapandian, 
D. Boneh, and G. Nakibly. Powerspy: Location 
tracking using mobile device power analysis. In 
USENIX Security Symposium, pages 785–800, 2015. 

[53] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, 
C. Vendome, and D. Poshyvanyk. Crashscope: A 
practical tool for automated testing of android 
applications. In 2017 IEEE/ACM 39th International 
Conference on Software Engineering Companion 
(ICSE-C), pages 15–18, May 2017. 

[54] .s -1.22.005Td
[(ConferThe(A )]TJNvice pw(A )]TJ(.))25 ork(A )]TJnehe pimes (G.)-2517.(G.)-257(G.)-25

http://www.legislation.gov.uk/ukpga/2002/31/introduction
http://www.legislation.gov.uk/ukpga/2002/31/introduction
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
http:http://publisher.salmonads.com
https://www.openx.com/company


[74] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard. 
Systematic classi�cation of side-channel attacks: a case 
study for mobile devices. IEEE Communications 
Surveys & Tutorials, 20(1):465–488, 2017. 

[75] Statista. Global market share held by the leading 
smartphone operating systems in sales to end users 
from 1st quarter 2009 to 2nd quarter 2018. 
https://www.statista.com/statistics/266136, 
2019. Accessed: February 11, 2019. 

[76] COUNTY OF LOS ANGELES SUPERIOR COURT 
OF THE STATE OF CALIFORNIA. Complaint for 
injunctive relief and civil penalties for violations of the 
unfair competition law. http://src.bna.com/EqH, 
2019. 

[77] Unity Technologies. Unity 3d. 
https://unity3d.com, 2019. 

[78] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, 
S. Egelman, D. Wagner, N. Good, and J.W. Chen. 
Turtle guard: Helping android users apply contextual 
privacy preferences. In Thirteenth Symposium on 
Usable Privacy and Security (SOUPS 2017), pages 
145–162. USENIX Association, 2017. 

[79] U.S. Federal Trade Commission. The federal trade 
commission act. (ftc act). 
https://www.ftc.gov/enforcement/statutes/ 
federal-trade-commission-act. 

[80] U.S. Federal Trade Commission. Children's online 
privacy protection rule (“coppa”). 
https://www.ftc.gov/enforcement/rules/ 
rulemaking-regulatory-reform-proceedings/ 
childrens-online-privacy-protection-rule, 
November 1999. 

[81] U.S. Federal Trade Commission. In the Matter of HTC 
America, Inc. 
https://www.ftc.gov/sites/default/files/ 

https://www.statista.com/statistics/266136
http://src.bna.com/EqH
https://unity3d.com
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htcdo.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htcdo.pdf
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/system/files/documents/cases/152_3099_c4612_turn_complaint.pdf
https://www.ftc.gov/system/files/documents/cases/152_3099_c4612_turn_complaint.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf

