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Abstract what is necessary to provide useful explanations. Despite 

Privacy and transparency are two key foundations of trustwor-
thy machine learning. Model explanations offer insights into a 
model's decisions on input data, whereas privacy is primarily 
concerned with protecting information about the training data. 
We analyze connections between model explanations and the 
leakage of sensitive information about the model's training 
set. We investigate the privacy risks of feature-based model 
explanations using membership inference attacks: quantifying 
how much model predictions plus their explanations leak infor-
mation about the presence of a datapoint in the training set of a 
model. We extensively evaluate membership inference attacks 
based on feature-based model explanations, over a variety of 
datasets. We show that backpropagation-based explanations 
can leak a signi�cant amount of information about individual 
training datapoints. This is because they reveal statistical infor-
mation about the decision boundaries of the model about an 
input, which can reveal its membership. We also empirically 
investigate the trade-off between privacy and explanation qual-
ity, by studying the perturbation-based model explanations. 

1 Introduction 
Black-box machine learning models are often used to make 
high-stakes decisions in sensitive domains. However, their in-
herent complexity makes it extremely dif�cult to understand 
the reasoning underlying their predictions. This development 
has resulted in increasing pressure from the general public 
and government agencies; several proposals advocate for 
deploying (automated) model explanations (Goodman and 
Flaxman 2017). In recent years, novel explanation frame-
works have been put forward; Google, Microsoft, and IBM 
now offer model explanation toolkits as part of their ML 
suites.1 

Model explanations offer users additional information 
about how the model made a decision with respect to their 
data records. Releasing additional information is, however, a 
risky prospect from a privacy perspective. The explanations, 
as functions of the model trained on a private dataset, might 
inadvertently leak information about the training set, beyond 
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adversary and design an attack that recovers private informa-
tion, thus illustrating the de�ciencies of existing algorithms 
(e.g., (Aïvodji, Bolot, and Gambs 2020; Long, Bindschaedler, 
and Gunter 2017; Sablayrolles et al. 2019; Yeom et al. 2018)). 
In this work, we use adversarial analysis to study existing 
methods. We focus on a fundamental adversarial analysis, 
called membership inference (Shokri et al. 2017a). In this 
setting, the adversary tries to determine whether a datapoint 
is part of the training data of a machine learning algorithm. 
The success rate of the attack shows how much the model 
would leak about its individual datapoints. 

This approach is not speci�c to machine learning. (Homer 
et al. 2008) demonstrated a successful membership infer-
ence attack on aggregated genotype data provided by the US 
National Institutes of Health and other organizations. This 



on major feature-based model explanations. We analyze 
both backpropagation-based model explanations, with an 
emphasis on gradient-based methods (Baehrens et al. 2009; 
Klauschen et al. 2015; Shrikumar, Greenside, and Kundaje 



�
�
�

�
�
�

�
�
�
�

2 Background and Preliminaries 
We are given a labeled dataset X � Rn , with n features 
and k labels. The labeled dataset is used to train a model c, 
which maps each datapoint ~x in Rn to a distribution over k 
labels, indicating its belief that any given label �ts ~x. Black-



SmoothGrad We focus our analysis on Smooth-
Grad (Smilkov et al. 2017), which generates multiple 
samples by adding Gaussian noise to the input and releases 
the averaged gradient of these samples. Formally for some 
k 2 N, 

X1 
� SMOOTH (~x) = rc( ~x + N (0; � ));

k 



is a practically feasible attack if the attacker has access to 
similar data sources. 

3 Privacy Analysis of 
Backpropagation-Based Explanations 

In this section we describe and evaluate our membership in-
ference attack on gradient-based explanation methods. We 
use the Purchase and Texas datasets in (Nasr, Shokri, and 
Houmansadr 2018); we also test CIFAR-10 and CIFAR-100 
(Sablayrolles et al. 2019), the Adult dataset (Dua and Graff 
2017) as well as the Hospital dataset (Strack et al. 2014). The 
last two datasets are the only binary classi�cation tasks con-
sidered. Where possible, we use the same training parameters 
and target architectures as the original papers (see Table 1 for 
an overview of the datasets). We study four types of informa-
tion the attacker could use: loss, prediction variance, gradient 
variance and the SmoothGrad variance. 

Table 1: Overview of the target datasets for membership 
inference 

Name Points Features Type # Classes 

Purchase 
Texas 
CIFAR-100 
CIFAR-10 
Hospital 
Adult 

197,324 
67,330 
60,000 
60,000 

101,766 
48,842 

600 
6,170 
3,072 
3,072 

127 
24 

Binary 
Binary 
Image 
Image 
Mixed 
Mixed 

100 
100 
100 
10 
2 
2 

Table 2: The average training and testing accuracies of the 
target models. 

Purchase Texas CIFAR CIFAR Hospital Adult 
-100 -10 

Train 1.00 0.98 0.97 0.93 0.64 0.85 
Test 0.75 0.52 0.29 0.53 0.61 0.85 

3.1 General setup 
For all datasets, we �rst create one big dataset by merging 
the original training and test dataset, to have a large set of 
points for sampling. Then, we randomly sample four smaller 
datasets that are not overlapping. We use the smaller sets to 
train and test four target models and conduct four attacks. 
In each instance, the other three models can respectively be 
used as shadow models. We repeat this process 25 times, 
producing a total of 100 attacks for each original dataset. 
Each small dataset is split 50/50 into a training set and testing 
set. Given the small dataset, the attacker has an a priori belief 
that 50% of the points are members of the training set, which 
is the common setting for this type of attack (Shokri et al. 
2017b). 

3.2 Target datasets and architectures 
The overview of the datasets is provided in Table 1 and an 
overview of the target models accuracies in Table 2. 

Purchase dataset The dataset originated from the “Ac-
quire Valued Shoppers Challenge” on Kaggle4. The goal 
of the challenge was to use customer shopping history to 
predict shopper responses to offers and discounts. For the 
original membership inference attack, Shokri et al. (2017b) 
create a simpli�ed and processed dataset, which we use as 
well. Each of the 197,324 records corresponds to a customer. 
The dataset has 600 binary features representing customer 
shopping behavior. The prediction task is to assign customers 
to one of 100 given groups (the labels). This learning task 
is rather challenging, as it is a multi-class learning problem 
with a large number of labels; moreover, due to the relatively 
high dimension of the label space, allowing an attacker ac-
cess to the prediction vector — as is the case in (Shokri et al. 
2017b) — represents signi�cant access to information. We 
sub-sampled smaller datasets of 20,000 points i.e. 10,000 
training and testing points for each model. We use the same 
architecture as (Nasr, Shokri, and Houmansadr 2018), namely 
a four-layer fully connected neural network with tanh activa-
tions. The layer sizes are [1024, 512, 256, 100]. We trained 
the model of 50 epochs using the Adagrad optimizer with a 
learning rate of 0.01 and a learning rate decay of 1e-7. 

Texas hospital stays The Texas Department of State 
Health Services released hospital discharge data public use 
�les spanning from 2006 to 2009.5 The data is about inpa-
tient status at various health facilities. There are four different 
groups of attributes in each record: general information (e.g., 
hospital id, length of stay, gender, age, race), the diagnosis, 
the procedures the patient underwent, and the external causes 
of injury. The goal of the classi�cation model is to predict 
the patient's primary procedures based on the remaining at-
tributes (excluding the secondary procedures). The dataset 
is �ltered to include only the 100 most common procedures. 
The features are transformed to be binary resulting in 6,170 
features and 67,330 records. We sub-sampled smaller datasets 
of 20,000 points i.e. 10,000 training and testing points for 
each model. As the dataset has only 67,330 points we allowed 
resampling of points. We use the same architecture as (Nasr, 
Shokri, and Houmansadr 2018), namely a �ve-layer fully 
connected neural network with tanh activations. The layer 
sizes are [2048, 1024, 512, 256, 100]. We trained the model 
of 50 epochs using the Adagrad optimizer with a learning 
rate of 0.01 and a learning rate decay of 1e-7. 

CIFAR-10 and CIFAR-100 CIFAR-10 and CIFAR-100 
are well-known benchmark datasets for image classi�cation 
(Krizhevsky and Hinton 2009). They consists of 10 (100) 
classes of 32 � 32 � 3 color images, with 6,000 (600) images 
per class. The datasets are usually split in 50,000 training and 
10,000 test images. For CIFAR-10, we use a small convolu-
tional network with the same architecture as in (Shokri et al. 
2017b; Sablayrolles et al. 2019), it has two convolutional 
layers with max-pooling, and two dense layers, all with Tanh 
activations. We train the model for 50 epochs with a learn-

4https://www.kaggle.com/c/acquire-valued-shoppers-
challenge/data 

5https://www.dshs.texas.gov/THCIC/Hospitals/Download. 
shtm 



ing rate of 0.001 and the Adam optimizer. Each dataset has 
30,000 points (i.e. 15,000 for training). Hence, we only have 
enough points to train one shadow model per target model. 
For CIFAR-100, we use a version of Alexnet (Krizhevsky, 
Sutskever, and Hinton 2012), it has �ve convolutional layers 
with max-pooling, and to dense layers, all with ReLu activa-
tions. We train the model for 100 epochs with a learning rate 
of 0.0001 and the Adam optimizer. Each dataset has 60,000 
points (i.e. 30,000 for training). Hence, we don't have enough 



Figure 1: Results for the threshold-based attacks using different attack information sources. The OPTIMAL attack uses the 
optimal threshold; the SHADOW trains a shadow model on data from the same distribution, and uses an optimal threshold for the 
shadow model. Using three such models results in nearly optimal attack accuracy. 
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Figure 2: A comparison between attacks using only the vari-
ance of the gradient and attacks using the entire gradient 
explanation as input. 

Shokri et al. (2017b) to ensure a valid comparison between 
the methods. We trained the attack model for 15 epochs using 
the Adagrad optimizer with a learning rate 0.01 of and a 
learning rate decay of 1e-7. As data for the attacker, we used 
20,000 explanations generated by the target 10,000 each for 
members and non-members. The training testing split for the 
attacker was 0.7 to 0.3. We repeated the experiment 10 times. 
We omitted CIFAR-100 for computational reasons. 

As can be seen in Figure 2, attacks based on the entire 
explanation perform slightly better than attacks based only 
on the variance. However, they are qualitatively the same and 
still perform very poorly for CIFAR-10, Adult, and Hospital. 

3.4 Combining different information sources 

The learning attacks described in the previous paragraph al-
low for a combination of different information sources. For 
example, an attacker can train an attack network using both 
the prediction and the explanation as input. Experiments on 
combining the three information sources (explanation, predic-
tion, and loss) lead to outcomes identical to the strongest used 
information source. Especially if the loss is available to an 
attacker, we could not �nd evidence that either the prediction 

Figure 3: Results for the threshold-based attacks using differ-
ent backpropagation-based explanations as sources of infor-
mation for the attacker. 

vector or an explanation reveals additional information. 

3.5 Results for other backpropagation-based 
explanations 

Besides the gradient, several other explanation methods based 
on backpropagation have been proposed. We conducted the 
attack described in Section 2.2 replacing the gradient with 
some other popular of these explanation methods. The tech-
niques are all implemented in the INNVESTIGATE library7 

(Alber et al. 2018). An in-depth discussion of some of these 
measures, and the relations between them, can also be found 
in (Ancona et al. 2018). As can be seen in Figure 3 on the 
Purchase, Texas, and CIFAR-10 datasets, the results for other 
backpropagation based methods are relatively similar to the 
attack based on the gradient. Integrated gradients performing 
most similar to the gradient. For Adult, Hospital and CIFAR-
100 small-scale experiments indicated that this type of attack 
would not be successful for these explanations as well, we 
omitted the datasets from further analysis. 

7https://github.com/albermax/innvestigate 



4 Analysis of factors of information leakage 
In this section, we provide further going analysis to validate 
our hypothesis and broaden understanding. 

4.1 The In�uence of the Input Dimension 
The experiments in Section 3 indicate that V ar (rc( ~x)) , and 
jjrc( ~x)jj 1 predict training set membership. In other words, 
high absolute gradient values at a point ~x signal that ~x is not 
part of the training data: the classi�er is uncertain about the 
label of ~x, paving the way towards a potential attack. Let 
us next study this phenomenon on synthetic datasets, and 
the extent to which an adversary can exploit model gradient 
information in order to conduct membership inference attacks. 
The use of arti�cially generated datasets offers us control over 
the problem complexity, and helps identify important facets 
of information leaks. 

To generate datasets, we use the Sklearn python library.8 

For n features, the function creates an n-dimensional hyper-
cube, picks a vertex from the hypercube as center of each 
class, and samples points normally distributed around the 
centers. In our experiments, the number of classes is either 2 
or 100 while the number of features is between 1 to 10,000 
in the following steps, 

n 2 f 1; 2; 5; 10; 14; 20; 50; 100; 127; 200; 500; 600; 
1000; 2000; 3072; 5000; 6000; 10000g: 

For each experiment, we sample 20,000 points and split them 
evenly into training and test set. We train a fully connected 
neural network with two hidden layers with �fty nodes each, 
the tanh activation function between the layers, and softmax 
as the �nal activation. The network is trained using Adagrad 
with learning rate of 0.01 and learning rate decay of 1e � 7 
for 100 epochs. 

Increasing the number of features does not increase the 
complexity of the learning problem as long as the number of 
classes is �xed. However, the dimensionality of the hyper-
plane increases, making its description more complex. Fur-
thermore, for a �xed sample size, the dataset becomes in-
creasingly sparse, potentially increasing the number of points 

https://learn.org/stable/modules/generated/sklearn.datasets.make


0 20 40
50%

55%

60%

65%

CIFAR-10

Purchase

Texas

Number of epochs

A
tta

ck
ac

cu
ra

cy

Figure 5: The attack accuracy of the attacker increases with 

Texas Purchase
0%

20%

40%

60%

80%

Random guess
Network

A
tta

ck
ac

cu
ra

cy

Gradient Prediction
LIME SmoothGrad

increasing number of epochs. 

5.1 Attacks using LIME explanation 
As a second perturbation-based method, we looked at the pop-
ular explanation method LIME (Singh, Ribeiro, and Guestrin 
2016). The type of attack is the same as described in Sec-
tion 2.2. We use an optimal threshold based on the variance of 
the explanation. However, the calculation of LIME explana-
tions takes considerably longer than the computation of other 
methods we considered. Every single instance computes for 
a few seconds. Running experiments with 10,000 or more 
explanations would take weeks to months. To save time and 
energy, we restricted the analysis of the information-leakage 
of LIME to smaller-scale experiments where the models train 
on 1,000 points, and the attacks run on 2,000 points each 
(1,000 members and 1,000 non-members). We also repeated 
each experiment only 20 times instead of 100 as for the others. 
Furthermore, given that the experiments for the other expla-
nations indicated that only for Purchase and Texas the attack 
was likely to be successful, we restricted our experiments 
to these two datasets. Figure 6 shows the results for these 
attacks. To ensure that it is not the different setting that deter-
mines the outcome, we also rerun the attacks for the gradient 
and SmoothGrad explanations, as well as the attack using 
the prediction variance in this new setting. Neither LIME 
nor SmoothGrad outperforms random guessing. For the Pur-
chase dataset, however, the attack using the gradient variance 
fails as well. As a �nal interesting observation, which we 
are unable to explain at the moment: For the Texas dataset, 
the gradient-based attack performs better than on the larger 
dataset (shown in Figure 1) it even outperforms the attack 
based on the prediction in this speci�c setting. Something we 
want to explore further in future works. 

5.2 Analysis 
While it is entirely possible that perturbation-based meth-
ods are vulnerable to membership inference, we conjecture 
that this is not the case. This conjecture is due to an inter-
esting connection between perturbation-based model expla-
nations and the data-manifold hypothesis (Fefferman and 
Mitter 2016). The data-manifold hypothesis states that “data 
tend to lie near a low dimensional manifold” (Fefferman and 
Mitter 2016, p. 984). Many works support this hypothesis 
(Belkin and Niyogi 2003; Brand 2003; Narayanan and Mitter 
2010), and use it to explain the pervasiveness of adversarial 
examples (Gilmer et al. 2018). To the best of our knowledge, 

Figure 6: Attacks using LIMEor SmoothGrad do not outper-

https://ec.europa.eu/info/sites/info/files/commission


governance; both expressed a great deal of interest in the po-
tential impact of our work on the ongoing debate over model 
explainability and its potential effects on user privacy. 

https://ssrn.com/abstract
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A The In�uence of the Input Dimension 
In Figure 7 we report experiments on the in�uence of the 
input dimension with networks of smaller/larger capacity, 
which have qualitatively similar behavior to our baseline 
model. However, the interval of n in which correlation exists 
and the amount of correlation varies. 
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Figure 7: The correlation between jjr c(~x)jj 1 and training mem-
bership for synthetic datasets for increasing number of features n 
and different number of classes k 2 f2; 100g for three different 
networks. The "Small" has one hidden layer with 5 nodes, "Base" 
has two layers with 50 nodes each, "Big" has 3 layers with 100 
nodes each. 

B Example-Based Explanations 
To illustrate the privacy risk of example-based model explana-
tions, we focus on the approach proposed by Koh and Liang 
(2017). It aims at identifying in�uential datapoints; that is, 
given a point of interest ~y, �nd a subset of points from the 
training data �( ~y) � X that explains the label c^(y~), where � 

�̂  is a parameterization induced by a training algorithm A. It 
selects a training point ~xtrain by measuring the importance of 
~xtrain for determining the prediction for ~y. 
To estimate the effect of ~xtrain on ~y, the explanation measures 
the difference in the loss function over ~y when the model is 
trained with and without ~xtrain. Let � ~ , A(X nf ~xtraing) ,x train 

in words, � ~ is induced by training algorithm A given thex train 

dataset excluding ~xtrain. The in�uence of ~xtrain on ~y is then 

I ~y (~xtrain) , L( ~y; � ~ ) � L( ~y; �̂ ): (2)x train 

The Koh and Liang explanation releases the k points with the 
highest absolute in�uence value according to Equation (2). 
Additionally, it might release the in�uence of these k points 
(the values of I ~y (~z) as per Equation (2)), which allows users 
to gauge their relative importance. 

C Membership-inference via Example-Based 
Model Explanations 

In this section we analyze how many training points an at-
tacker can recover with access to example-based explanations. 
We focus on logistic regression models, for which example-
based explanations were originally used (Koh and Liang 
2017). The results can be generalized to neural networks by 
focusing only on the last layer, we demonstrate this by con-
sidering a binary image classi�cation dataset used in (Koh 
and Liang 2017); we call this dataset Dog/Fish. We also fo-
cus only on binary classi�cation tasks. While technically the 
approaches discussed in previous sections could be applied 
to this setting as well, example-based explanations allow for 
stronger attacks. Speci�cally, they explicitly reveal training 
points, and so offer the attacker certainty about a points' train-
ing set membership (i.e. no false positives). Formally, we say 
a point ~y reveals point ~x if for all z 2 X , jI y~ (~x)j � jI y~ (~z)j . 
In other words, ~x will be offered if one requests a example-
based explanation for ~y. Similarly, ~y k-reveals point ~x if 
there is a subset S � X ; jSj = k � 1 such that 8z 2 X nS : 
jI y~ (~x)j � j I y~ (~z)j: Hence, ~x will be one of the points used 
to explain the prediction of ~y if one releases the top k most 
in�uential points. A point ~x 2 X that (k-)reveals itself, is 
called (k-)self-revealing. 

Revealing membership for example-based explanations 
While for feature-based explanations the attacker needs to 
rely on indirect information leakage to infer membership, for 
example-based explanations, the attacker's task is relatively 
simple. Intuitively, a training point should be in�uential for its 
own prediction, so an example-based explanation of a training 
set member is likely to contain the queried point, revealing 
membership. We test this hypothesis via experiments, i.e. 
for every point ~x 2 X in the training set we obtain the 
k 2 f 1; 5; 10g most in�uential points for the prediction f � (~x) 
and see if ~x is one of them. 

C.1 Experimental setup 
While the theoretical framework of in�uence functions de-
scribed in Section 2 can be applied to an arbitrary classi�-
cation task, it requires the training of as many classi�ers as 
there are points in the training set in practice. Koh and Liang 
(2017) propose an approximation method, but currently we 
only have access of its implementation for binary logistic 
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Adult and Hospital datasets from our previous experiments 
for which we train binary logistic regression models. Fur-
thermore, given the relatively long time it takes to compute 
all models, we reduce the size of the training set to 2,000 
points, so we can run one experiment within a few hours (see 
Figure 9 for an exploration of the effect of dataset size). Koh 
and Liang (2017) use a speci�cally created dataset containing 
2400 299 � 299-pixel dog and �sh images, extracted from 
ImageNet (Russakovsky et al. 2015). The images were pre-
processed by taking the output of the penultimate layer of 
a neural network trained on ImageNet.10 These latent repre-
sentations were then used to train a linear regression model. 
For more variety we include this dataset here as the Dog/Fish 
dataset. Arguably, this dataset doesn't contain particularly pri-
vate information, but it can be seen as representative of image 
data in general. It also allows us to attack a pre-trained deep 
neural network which last layer was �ne tuned. This type of 
transfer learning for small dataset becomes increasingly pop-
ular. Given the small size of this dataset we randomly split 
it into 1800 training and 600 test points for each experiment. 
For each dataset we repeat the experiment 10 times. 

C.2 Evaluation 
Figure 8 shows the percentage of training points that would 
be revealed by explaining themselves. For the standard set-

10Speci�cally, the authors used an Inceptionv3 architecture, for 
which pre-trained models are available for Keras https://keras.io/ 
applications/\#inceptionv3. 

�20 �15 �10 �5 0
logmax~z2X (I x 0 (~z))

Test set

Figure 10: Histogram of the in�uence of the most in�uential points 
for every point in the training set(left) and test set (right) on a 
logarithmic scale (for one instance of Dog/Fish). The points in the 
training set for which the membership inference is successful (i.e. 
~x0 = argmax~z 2X (I x 0 (~z))) are highlighted in red (dark). 

ting where the top 5 most in�uential points are revealed, a 
quarter of each dataset is revealed on average. For the Hospi-
tal dataset, two thirds of training points are revealed. Even 
when just the most in�uential point would be released for the 
Adult dataset (which exhibits the lowest success rates), 10% 
of the members are revealed through this simple test. 

As mentioned in Appendix B, the in�uence score of the 
most in�uential points might be released to a user as well. 
In our experiments, the in�uence scores are similarly dis-
tributed between training and test points (i.e. members and 
non-members); however, the distribution is signi�cantly dif-
ferent once we ignore the revealed training points. Figure 10 
illustrates this for one instance of the Dog/Fish dataset; simi-
lar results hold for the other datasets. An attacker can exploit 
these differences, using techniques similar to those discussed 
in Section 2.2; however, we focus on other attack models in 
this work. 

C.3 Minority and outlier vulnerability to 
inference attacks for example-based 
explanations 

Visual inspection of datapoints for which membership attacks 
were successful indicates that outliers and minorities are 
more susceptible to being part of the explanation. Images 
of animals (a bear, a bird, a beaver) eating �sh (and labeled 
as such) were consistently revealed (as well as a picture 
containing a �sh as well as a (more prominent) dog that was 
labeled as �sh). We label three “minorities” in the dataset to 
test the hypothesis that pictures of minorities are likelier to 
be revealed (Table 3a). 

With the exception of k = 1 (for lion and clown �sh), 
minorities are likelier to be revealed. While clown�sh (which 
are fairly “standard” �sh apart from their distinct coloration) 
exhibit minor differences from the general dataset, birds are 
more than three times as likely to be revealed. The Hospital 
dataset exhibits similar trends (Table 3b). Young children, 
which are a small minority in the dataset, are revealed to a 
greater degree; ethnic minorities also exhibit slightly higher 
rates than Caucasians. This is mirrored (Table 3c) for the 
Adult dataset, with the exception of the age feature and the 





Figure 11: Illustrations of datasets for which only two (left) or all 
(right) points can be revealed under standard training procedures. 

D.1 Bounds on number of revealable points 
It is relatively easy to construct examples in which only two 
points in the dataset can be revealed (see Figure 11). In fact, 
there are speci�c instances in which only a single datapoint 
can be revealed (see Lemma D.1), however these cases are 
neither particularly insightful nor do they re�ect real-world 
settings. On the other side, there exists datasets where, in-
dependent of the number of features, the entire dataset can 
be recovered. The right side of Figure 11 illustrates such an 
example. 

The following Lemma characterizes the situations in which 
only a single point of the dataset can be revealed for X � R. 
The conditions for higher dimensions follow from this. 

Lemma D.1. Given a training set X let f � and FX be in-
duced by X with jF X j � 2, then one of the following state-
ments is true 

1. 8~x 2 X : w = w~x and (b � b~x ; 8x 2 X )_ (b � b~x ; 8x 2 
X ) (i.e all functions in FX are shifted in one direction of 
f � ), 

2. 9~y 2 Rn : 8~x 2 X : w~x ~y + b~x = w~y + b (i.e all functions 
in FX intersect with f� in the same point) , 

3. 8~x 2 X : w = w~x and there exists a numbering of the 
points in X such that b1 � b2 � � � � � bk � b � 

b1bk+1 ; : : : ; bm such that b � log( 1 (e + ebm ).2 
4. at least two points can be revealed. 

Proof. It is easy to see that in the �rst two situations only one 
point can be revealed (the one corresponding to the largest 
shift or largest angle at intersection). In the third case all func-
tions in FX are shifts of f � , but not all in the same direction. 
Only, the left most and right most shift are candidates for 
being revealed as they clearly dominate all other shifts. Also 
we assume b1 < b < b m (as soon as one shift coincidences 
with the original model the statement is trivially true). Some 
calculus reveals the condition for which the two points would 
have the same in�uence is 

� b �b1 bm�2e + e + e 
y = ln =w 

eb+b 1 + eb+b m � 2eb1 +b m 

, which is well de�ned when the expression inside the loga-
b+b 1 b+b m b1 +b mrithm is positive and e + e � 2e 6= 0. The for-b-



the model parameters � = ( ~w; b) are induced by 
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Figure 12: Distribution over the size of the revealed training 
data, starting from a random point in the in�uence graph. This 
is obtained by averaging over 10 initiations of the training set. 
Each time roughly the size of the largest SCC is recovered. 
For the Hospital dataset the size of the SCC varies the most, 
hence the multimodal distribution. 

# points Dataset n jX j % of jX j recovered 

Dog/Fish 2048 1,800 1790 99.4 
Adult 104 2,000 91.5 4.6 
Hospital 127 2,000 81.1 4.0 

Table 4: The number of points recovered using our attack 
based on subspace reduction. For small sized, high dimen-
sional data, notably Dog/Fish, the attack can recover (almost) 
the entire dataset. 

Number of strongly connected components (SCCs): a 
high number of SCCs implies that the training set is harder 
to recover: an adaptive algorithm can only extract one SCC 
at a time. It also implies that the underlying prediction task is 
fragmented: labels in one part of the dataset are independent 
from the rest. 
Size of the SCCs: large SCCs help the attacker: they are 
more likely to be discovered, and recovering just some of 
them already results in recovery of signi�cant portions of the 
training data. 
Distribution of in-degrees: the greater a node's in-degree 
is, the likelier its recovery; for example, nodes with zero 
in-degree may be impossible for an attacker to recover. Gen-
erally speaking, a uniform distribution of in-degrees makes 
the graph easier to traverse. 

E Dataset Reconstruction for 
Example-Based Explanations 

We evaluate our reconstruction algorithms on the same 
datasets as the membership inference for example-based ex-
planations. In this section we describe the results for the two 
approaches described above. In Appendix E.3 we compare 
them to some general baselines. 

Dog/Fish Adult Hospital 

#SCC 1709 1742 1448 
#SCC of size 1 1679 1701 1333 
Largest SCC size 50 167 228 
Max in-degree 1069 391 287 
#node in-degree=0 1364 1568 727 

Table 5: Some key characteristics of the in�uence graphs 
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(a) Uniform datapoint sampling. 
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(b) Marginal feature distribution sampling (for the Dog/Fish dataset 
points are sampled in the latent space). 
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(c) True point distribution sampling. 

Figure 13: % of training data revealed by an attacker using dif-


