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Abstract

We propose a model of data provision and data pricing. A single data provider

controls a large database that contains information about the match value between



The use of individual-level information is rapidly increasing in many economic and po-

litical environments, ranging from advertising (various forms of targeting) to electoral cam-

paigns (identifying voters who are likely to switch or to turn out). In all these environments,

the socially e¢ cient match between individual and ìtreatmentîmay require the collection,

analysis and di¤usion of highly personalized data. A large number of important policy and

regulatory questions are beginning to emerge around the use of personal information. To

properly frame these questions, we must understand how markets for personalized informa-

tion impact the creation of surplus, which is the main objective of this paper.

Much of the relevant data is collected and distributed by data brokers and data interme-

diaries ranging from established companies such as Acxiom and Bloomberg, to more recently

established companies such as Bluekai and eXelate. Perhaps the most prevalent technology

to enable the collection and resale of individual-level information is based on cookies and

related means of recording browsing data. Cookies are small Öles placed by a website in a

userís web browser that record information about the userís visit. Data providers use several

partner websites to place cookies on userís computers and collect information. In particu-

lar, the Örst time any user visits a partner site (e.g., a travel site), a cookie is sent to her

browser, recording any action taken on the site during that browsing session (e.g., searches

for áights).1 If the same user visits another partner website (e.g., an online retailer), the

information contained in her cookie is updated to reáect the most recent browsing history.

The data provider therefore maintains a detailed and up-to-date proÖle for each user, and

compiles segments of consumer characteristics, based on each individualís browsing behavior.

The demand for such highly detailed, consumer-level information is almost entirely driven

by advertisers, who wish to tailor their spending and their campaigns to the characteristics

of each consumer, patient, or voter.

The two distinguishing features of online markets for data are the following: (a) individual

queries (as opposed to access to an entire database) are the actual products for sale,2 and

(b) linear pricing is predominantly used. In other (i)6(1i(w)15c)9D(l)]TJ r ar



but are equally representative of many online and o ine markets for personal information.

In all these markets, a general picture emerges where an advertiser acquires very detailed





size of the database, but the monopoly price may, in fact, decrease. This is contrast with

the e¤ect of a more accurate database.

In Section IV, we enrich the set of pricing mechanisms available to the data provider.

In particular, in a binary-action model, we introduce nonlinear pricing of information struc-

tures. We show that the data provider can screen vertically heterogeneous advertisers by

o¤ering subsets of the database at a decreasing marginal price. The optimal nonlinear price

determines exclusivity restrictions on a set of ìmarginalîcookies: in particular, second-best

distortions imply that some cookies that would be proÖtable for many advertisers are bought

by only by a small subset of high-value advertisers.

The issue of optimally pricing information in a monopoly and in a competitive market

has been addressed in the Önance literature, starting with seminal contributions by Admati

and Páeiderer (1986), Admati and Páeiderer (1990) and Allen (1990), and more recently by

García and Sangiorgi (2011). A di¤erent strand of the literature has examined the sale of in-

formation to competing parties. In particular, Sarvary and Parker (1997) model information-

sharing among competing consulting companies; Xiang and Sarvary (2013) study the in-

teraction among providers of information to competing clients; Iyer and Soberman (2000)

analyze the sale of heterogeneous signals, corresponding to valuable product modiÖcations,

to Örms competing in a di¤erentiated-products duopoly; Taylor (2004) studies the sale of

consumer lists that facilitate price discrimination based on purchase history; Calzolari and

Pavan (2006) consider an agent who contracts sequentially with two principals, and allow

the former to sell information to the latter about her relationship (contract o¤ered, deci-

sion taken) with the agent. All of these earlier papers only allow for the complete sale of

information. In other words, they focus on signals that revealed (noisy) information about

all realizations of a payo¤-relevant random variable. The main di¤erence with our paperís

approach is that we focus on ìbit-pricingîof information, by allowing a seller to price each

realization of a random variable separately.



formation about a payo¤-relevant state, in a principal-agent framework. Anton and Yao

(2002) emphasize the role of partial disclosure; Hörner and Skrzypacz (2012) focus on the

incentives to acquire information; and Babaio¤, Kleinberg and Paes Leme (2012) allow both

the seller and the buyer to observe private signals. Finally, Ho¤mann, Inderst and Otta-

viani (2014) consider targeted advertising as selective disclosure of product information to

consumers with limited attention spans.

The role of speciÖc information structures in auctions, and their implication for online

advertising market design, are analyzed in recent work by Abraham et al. (2014), Celis

et al. (2014), and Syrgkanis, Kempe and Tardos (2013). All three papers are motivated by

asymmetries in biddersíability to access additional information about the object for sale.

Ghosh et al. (2012) study the revenue implications of cookie-matching from the point of

view of an informed seller of advertising space, uncovering a trade-o¤ between targeting

and information leakage. In earlier work, Bergemann and Bonatti (2011), we analyzed the

impact that changes in the information structures, in particular the targeting ability, have

on the competition for advertising space.

I Model

A Consumers, Advertisers, and Matching

We consider a unit mass of uniformly distributed consumers (or ìusersî), i 2 [0; 1], and ad-

vertisers (or ìÖrmsî), j 2 [0; 1]. Each consumer-advertiser pair (i; j) generates a (potential)

match value for the advertiser j:

v : [0; 1]� [0; 1]! V; (1)

with v (i; j) 2 V = [v; �v] � R+.

Advertiser j must take an action qij � 0 directed at consumer i to realize the potential

match value v (i; j). We refer to q as the match intensity. We abstract from the details

of the revenue-generating process associated to matching with intensity q. The complete-

information proÖts of a Örm generating a match of intensity q with a consumer of value v

are given by

� (v; q) , vq � c �m (q) : (2)

The matching cost function m : R+! R+



ing an amount of advertising space m (q), which we assume can be purchased at a unit price

c > 0. If consumer i is made aware of the product, he generates a net present value to the

Örm equal to v (i; j).

B Data Provider

Initially, the advertisers do not have information about the pair-speciÖc match values v (i; j)

beyond the common prior distribution described below. By contrast, the monopolistic data

provider has information relating each consumer to a set of characteristics represented by

the index i, and each advertiser to a set of characteristics represented by the index j. The

database of the data provider is simply the mapping (1) relating the characteristics (i; j) to a

value of the match v (i; j), essentially a large matrix with a continuum of rows (representing

consumers) and columns (representing Örms).



C Distribution of Match Values

The (uniform) distribution over the consumer-Örm pairs (i; j) generates a distribution of

values through the match value function (1). For every measurable subset A of values in V ,

the resulting measure � is given by:

� (A) ,
Z
fi;j2[0;1]jv(i;j)2Ag

didj.

Let the interval of values beginning with the lowest value be Av , [v; v]. The associated

distribution function F : V ! [0; 1] is deÖned by

F (v) , � (Av) .

By extension, we deÖne the conditional measure for every consumer i and every Örm j by

�i (A) ,
Z
fj2[0;1]jv(i;j)2Ag

dj, and �j (A) ,
Z
fi2[0;1]jv(i;j)2Ag

di,

and the associated conditional distribution functions Fi (v) and Fj (v). We assume that the

resulting match values are identically distributed across consumer and across Örms, i.e., for

all i, j, and v:

Fi (v) = Fj (v) = F (v) .

Thus, F (v) represents the common prior distribution for each Örm and each consumer about



Figure 1 summarizes the timing of our model.

Figure 1: Timing

We note that the present model does not explicitly describe the consumerís problem

and the resulting indirect utility. To the extent that information facilitates the creation of

valuable matches between consumers and advertisers, as a Örst approximation, the indirect

utility of the consumer may be thought of as co-monotone with the realized match value v.

In fact, with the advertising application in mind, we may view q as scaling the consumerís

willingness to pay directly, or as the amount of advertising e¤ort exerted by the Örm, which

also enters the consumerís utility function. Thus, the proÖt function in (2) is consistent

with the informative, as well as the persuasive and complementary views of advertising (see

Bagwell, 2007).

A more elaborate analysis of the impact of information markets on consumer surplus

and on the value of privacy would probably have to distinguish between information that

facilitates the creation of surplus, which is focus of present paper, and information that

impacts the distribution of surplus. For example, additional information could improve the

pricing power of the Örm and shift surplus from the consumer to the Örm (as for example in

Bergemann, Brooks, and Morris, 2013).

II Demand for Information

The value of information for each advertiser is determined by the incremental proÖts they

could accrue by purchasing more cookies. Advertiser j is able to perfectly tailor his adver-

tising spending to all consumers included in the targeted set Aj. In particular, we denote

the complete information demand for advertising space q� (v) and proÖt level �� (v) by

q� (v) , arg max
q2R+

[� (v; q)] ;

�� (v) , � (v; q� (v)) :

By contrast, for all consumers in the complement (or residual) set AC
j , advertiser j must

form an expectation over v (�; j) , and choose a constant level of q for all such consumers.

9



Because the objective � (v; q) is linear in v, the optimal level of advertising q�(AC)is given

by

q�(AC), arg max
q2R

�� (v; q) j

v 2 AC
� = q� (E [v j

v 62 A:
surable subset A of the set of match values V :max

A�V

�Z
A� (v; q� (v))�p) d

F (v



contacting everyone else. That is, advertisers choose a constant action q 2 f0; 1g on the

targeted set A and a di¤erent constant



and (c) the cost c of the advertising space guides their strategy. At the same time, the binary

environment cannot easily capture several aspects of the model, including the following: the

role of the distribution of match values (and of the relative size of the left and the right

tail in particular); the role of precise tailoring and the need for more detailed information;

the determinants of the advertisersíoptimal targeting strategy; and the e¤ect of the cost of

advertising on the demand for information.

B The Continuous Action Environment

We now proceed to analyze the general version of our model, in which we consider a con-



realized complete information proÖt �� (v) is strictly convex in v. In contrast, the realized

proÖt under prior information is linear in v, and it is given by � (v; �q). Figure 2 describes

the proÖt function under complete information �� (v) and prior information � (v; �q).

Figure 2: Complete Information and Prior Information Profits

As intuitive, under prior information, the Örm chooses excessive (wasteful) advertising

to low-value consumers and insu¢ cient advertising to higher-value consumers. The Örm

therefore has a positive willingness to pay for information, i.e., for cookies. The value of

d18d586(e)9(x)11(4680(h)120(�)6(49(t4)8(i)6(t)8(i)6 Tf 1)5(�(469205)1512(d)t)35)8(i312(d)2 Tf 9.,)]T86(e)9(x)111(e)-49852 8ctisucm
q
p7.559 -1e8(i)6(o)Tf 243.816 0 Td [(�)]TJ/F15 11.9552 Tf 9.062 0 Td [( 114.a)10(t)8(i)6(o)11on und 11.9552 Tf 114.75d







While the residual set is always connected, as established by Proposition 2, the targeted

set may be as well. In particular, the choice of a single (positive or negative) targeting policy

depends on the value of information, and on its monotonicity properties over any interval.

Proposition 4 establishes su¢ cient conditions under which Örms demand cookies in a single

interval, i.e., they choose positive or negative targeting only.

Proposition 4 (Exclusive Targeting: Positive or Negative)

1. If m00 (q) and f (v) are decreasing, positive targeting is optimal:

A (c; p) = [v2 (c; p) ; �v] ; and v2 > v:

2. If m00 (q) and f (v) are increasing, negative targeting is optimal:

A (c; p) = [v; v1 (c; p)] ; and v1 < �v:

The su¢ cient conditions in Proposition 4 for exclusive targeting are perhaps best under-

stood when viewed as departures from the symmetric conditions of Proposition 3. If, say,

positive targeting is to dominate negative targeting, then the gains from information must be

larger on the upside than on the downside of values. Recall that the gains from information

given the realization v are equal to �� (v)� � (v; �q). Thus, if the curvature of the matching

cost function m00 (q) is decreasing, the gains from information for realizations v equidistant

from the mean E [v] are larger above the mean than below. Now, this pairwise comparison

and reasoning could be undone by the relative likelihood of these two events. Thus, for

the su¢ cient conditions, we need to guarantee that the distribution of values supports this

pairwise argument, and hence the corresponding monotonicity requirement on the density

f (v). Figure 4 shows the equilibrium proÖt levels under positive targeting (a) and negative

targeting (b).10

10In both panels, F (v) = v, v 2 [0; 1] and m (q) = qb=b. In panel (A), b = 3=2, and in panel (B), b = 3.
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Figure 4: Positive or Negative Targeting
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The optimality of targeting consumers in a single interval can be traced back to the two

sources of the value of information, i.e., wasteful advertising for low types and insu¢ cient

advertising for valuable consumers. Proposition 4 relates the potential for mismatch risk to

the properties of the match cost function. In particular, when the curvature of the matching

cost function is increasing, it becomes very expensive to tailor advertising to high-value

consumers. In other words, the risk of insu¢ cient advertising is not very high, given the cost

of advertising space. The Örm then purchases cookies related to lower-valued consumers.11

When choosing a targeting strategy, the advertiser trades o¤ the amount of learning over

values in the residual set with the costs and beneÖts of acquiring information about values in

the targeted set. The amount of learning is related to the range of the residual set jv2 � v1j,
while the costs and beneÖts of information are related to the probability measure of the

targeted set. Therefore, targeting a less likely subset of values requires a smaller expense

(in terms of the cost of cookies) in order to generate a given amount of information. The

distribution of match values then a¤ects the optimality of positive vs. negative targeting: for

example, under a matching cost function with constant curvature, decreasing density f (v)

leads to positive targeting, and vice-versa.

D Empirical Relevance

Both positive and negative targeting strategies are relevant for online advertising markets.

In particular, negative targeting is explicitly allowed as a reÖnement option by most large
11Examples of matching cost functions with concave marginal costs include power functions, m (q) = qa

with a < 2. Examples of convex marginal costs include those derived from the Butters (1977) exponential
matching technology, i.e., m (q) = �a ln (1� q) ; with a > 0, and power functions m (q) = qa, with a > 2.
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E Implications for Publishers

We conclude this section by examining the interaction between the markets for data and on-

line advertising. In particular, we assess the e¤ect of data sales on the demand for advertising

space and the implications of vertical integration between publishers and data providers.

The e¤ect of the price of data on the total demand for advertising space is unclear a

priori. For instance, the demand for advertising space may increase or decrease in the

amount of information available to advertisers, depending on whether the data is used for

positive or negative targeting. To formalize this trade-o¤, consider the total demand for

advertising space as a function of the targeted set A (c; p). Because any advertiser who

wishes to generate match intensity q with a consumer must purchase an amount of space

equal to m (q), the total demand for advertising is given by

M (A) ,
Z
A

m (q� (v)) dF (v) +

Z
AC
m(q�(AC))dF (v) . (11)

We are interested in the e¤ect of the amount of data sold � (A) on the total demand for

advertising M (A). Figure 5 considers the case of negative targeting, and compares the

demand for advertising m (q (v)) for Öxed targeted and residual sets, under two di¤erent

matching cost functions.

Figure 5: Total Demand for Advertising
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As is intuitive, the total demand for advertising (i.e., the area under the solid lines in

Figure 5) is increasing in the measure of the targeted set A when the complete information

demand for advertising m (q� (v)) is convex in v. Our next result formalizes the interaction of

the data and advertising markets by relating the sign of the cross-market externality to the
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properties of the matching cost function. In Proposition 5 (as well as in Propositions 7, 8,

and 9), we assume that the distribution of match values and the matching cost function lead

to exclusive targeting (positive or negative). Proposition 4 provides su¢ cient conditions.

Proposition 5 (Market Interaction)
Assume exclusive (positive or negative) targeting is optimal.

1. If m0 (q) is log-concave, the demand for advertising M (A (c; p)) is decreasing in p.

2. If m0 (q) is log-convex, the demand for advertising M (A (c; p)) is increasing in p.

The proof of Proposition 5 establishes that convexity of the complete-information demand

for advertising is equivalent, in terms of the primitives of our model, to the log-concavity

of the marginal cost of matching. Furthermore, the conditions in Proposition 5 are related

to those for the optimality of exclusive targeting (Proposition 4). In particular, if positive

targeting is optimal, the demand for advertising space is decreasing in p (but not vice-versa).

Finally, we can leverage the results of Proposition 5 to analyze the problem a company

(e.g., Google, Yahoo!, or Facebook) that acts as both data provider (by providing informa-

tion that allows targeted advertising) and publisher (by allowing advertisers to contact con-

sumers). In particular, under the su¢ cient conditions of Proposition 5, the publisher wants

to allow either complete access or no access to the data (corresponding to p� 2 f0;1g).
In other words, our analysis suggests which market conditions are conducive to the wide

di¤usion of user-level information among the advertisers, and conversely which conditions

discourage sellers from o¤ering precise targeting opportunities. In particular, when the de-

mand for advertising space is decreasing in p, a publisher with access to data can beneÖt

from the indirect sale of information, i.e. from bundling information and advertising space

in order to drive up demand for the latter.15

III The Price of Data

In this section, we explore the determinants of the monopoly price of data. We begin with

the cost of advertising c, before turning to the fragmentation of data sales, the size of the

database, and the precision of the data providerís information. In the latter three cases, we

highlight the role of the residual set in determining the willingness to pay for information,

and of the ability of the monopolist to ináuence its composition.

15We could also endow the publisher with market power, i.e., allow the publisher and the data provider
to coordinate their actions, without qualitatively a¤ecting this result.
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An important implication of the demand analysis in Section II is that the advertisersí

optimal targeting strategy is not ináuenced qualitatively by the price of data p. In particular,

under the conditions of Propositions 1, 3 or 4, the price of data a¤ects the size of the targeted

set only. In other words, throughout this section, the monopolist takes the shape of the

targeted set A (c; p) as given, and chooses the revenue-maximizing price

p� = arg max
p

[p � � (A (c; p))] :

A Data and Advertising: Complements or Substitutes?

From the point of view of an advertiser, the data provider and the publisher of advertising

space are part of a value chain. It is therefore tempting to view the interaction of the

data provider and publisher as a vertical chain (formed by strategic complements), and to

associate with it the risk of double marginalization. This would suggest that an increase in

the cost c of advertising would lead optimally to a partially o¤setting decrease in the price

of information p� (c). But at closer inspection, the relationship between the price of data

and that of advertising is more subtle.



Recall the characterization of the advertiserís optimal targeting strategy in the binary-

action setting (Proposition 1): positive targeting is adopted when the cost of advertising c



particular, we focus on the externality that each sellerís price imposes on the other sellers

through the composition of the advertisersí residual set. Our formulation follows closely

the business model of the data exchange, where a data provider does not buy and resell

information, but rather o¤ers a platform for matching individual buyers and sellers, who set

their own prices.17

Formally, we consider a continuum of data sellers, and we assume that each seller has

exclusive information about one consumer segment i. Thus, each seller sets the price for one

cookie only. We seek to characterize a symmetric equilibrium of the pricing game. In the

following discussion, we assume that positive targeting is optimal (Proposition 4 provides

su¢ cient conditions). Analogous results hold for the case of negative targeting, as stated in

Proposition 7.

We begin by considering an advertiserís demand for information. Suppose all sellers but

j charge price p�j. Every advertiser then chooses the targeted set A = [v2; �v] where the

threshold value v2 (p�j) solves the condition

p�j = �� (v2)� � (v2; q
� ([v; v2])) :

Thus, the cookie sold by seller j will have a distribution of values across advertisers that

depends on the other sellersíprices through their e¤ect on the residual set. In particular,

a symmetric price proÖle p�j can be summarized by the threshold v2 that it induces. Now

consider an advertiser whose match value with the cookie of seller j is equal to v. This

advertiserís willingness to pay is equal to the di¤erential proÖt under the threshold strategy

v2 (p�j). Therefore, seller j faces the inverse demand function p (v; v2) given by

p (v; v2) , �� (v)� � (v; q� ([v; v2])) : (12)

Because match values with a given seller v (�; j) are identically distributed, we can reformulate

the sellerís problem as choosing a threshold v to maximize proÖts given the advertisersí

threshold v2. A symmetric equilibrium threshold then solves the following problem:

v2 = arg max
v

[p (v; v2) (1� F (v))] .

The key di¤erence with the monopoly problem lies in the residual advertising intensity

q� ([v; v2]) ; which cannot be ináuenced by the price of any individual seller. More pre-

cisely, suppose the monopolist considers expanding the supply of cookies, hence lowering the

17We may also interpret the fragmentation of data sales as a market where individual users are able to
sell their own data.
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price of cookies, and on the equilibrium proÖts of the data provider and the advertisers.

We assume that the data provider owns information about a fraction � < 1 of all con-

sumers. Advertisers know the distribution of match values of consumers present in the

database, and of those outside of it. In real-world data markets, consumers in a database

may have di¤erent characteristics from those outside of it, i.e., the presence of a cookie on

a given consumer is per se informative. For simplicity, we assume that the two distributions

are identical, so that the measure of consumers in the dataset is given by �F (v



becomes less limited.18

Two Önal remarks are in order. First, a reduction in price implies an increase in the

range of data sold by the monopolist [v2; �v] as the reach � increases. Therefore, an increase

in the reach � leads to higher data sales. Thus advertisers pay a lower price and access more

information, which implies that their proÖts increase. This means that an increase in data

availability can induce a Pareto improvement in the market for information.

Second, note that we have assumed in Proposition 8 that exclusive (positive or negative)





IV Beyond Linear Pricing

We have focused so far on a fairly speciÖc set of information structures (cookies-based) and

pricing mechanisms (linear prices). We now return to the monopoly environment, and we

generalize our analysis of data sales to address two closely related questions: (i) What is

the optimal mechanism for a monopolist to sell information? (ii) Are there conditions under

which pricing of individual cookies can implement the optimal mechanism?

Up to now, we assumed that the advertisers are symmetric in the distribution of the

match values. Moreover, the advertisers attached the same willingness to pay to a consumer







quantity discounts in Maskin and Riley (1984). The proof of this result can be found in the

working paper.

Proposition 12 (Prices and Quantities)

1. The number of cookies sold, Q (�) and the transfer T (�) are increasing in �.

2. The incremental cookie price p (Q) is decreasing in Q and decentralizes the direct op-

timal mechanism if (1�G (�)) =g (�) is decreasing.

Thus, the data provider can decentralize the optimal direct mechanism by allowing ad-

vertisers to access a given portion of the database, with volume discounts for those who

demand a larger amount of cookies. This establishes an equivalent implementation of the

optimal mechanism, based on advertiser self-selection of a subset of cookies. We can then

view the (constant) monopoly price p for cookies (which yields a total payment pQ) as a

linear approximation of the optimal nonlinear tari¤ T (Q) in this particular case.24

V Concluding Remarks

We analyzed the sale of individual-level information in a setting that captures the key eco-

nomic features of the market for third-party data. SpeciÖcally, in our model, a monopolistic

data provider determines the price to access informative signals about each consumerís pref-

erences.

Our Örst set of results characterized the demand for such signals by advertisers who wish

to tailor their spending to the match value with each consumer. We showed how properties

of the complete information proÖt function determine the optimality of an information-

purchasing strategy that achieves positive targeting, negative targeting, or both. We also

explored the interaction between the markets for data and advertising, and we showed that

a publisher of advertising space can, but need not, beneÖt from the availability of data to

the advertisers.

Turning to monopoly pricing of cookies, we established that the ability to ináuence the

composition of the advertisersítargeted and residual sets was the key driver of the optimal

(linear) prices. As a consequence, both the reach of the monopolistís database and the

concentration of data sales provide incentives to lower prices.

We then considered an environment in which advertisers di¤er in their willingness to

pay, and we showed that cookies-based pricing can be part of an (approximate) optimal

24See Rogerson (2003) for bounds on the loss in proÖts from simpler mechanisms such as linear pricing.
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mechanism for the sale of information. In particular, we showed that the data provider can

decentralize the optimal mechanism by o¤ering a nonlinear pricing schedule for cookies.

We, arguably, made progress towards understanding basic aspects of data pricing and

data markets. We did so by making a number of simplifying assumptions. A more com-

prehensive view of data markets would require a richer environment. In the present model,

the information supported the formation of valuable matches, and hence could be viewed as

increasing the surplus of the consumer and the advertiser at the same time. But if informa-

tion could also impact the division of surplus between them, then the value of information

(and the corresponding value of privacy) would require a more subtle analysis.

In the present model neither the advertiser nor the publisher had access to any propri-

etary information about the consumers. In reality, advertisers and (more prominently) large

publishers and advertising exchanges maintain databases of their own. Thus, the nature of

the information sold and the power to set prices depend on the initial allocation of informa-

tion across market participants. Moreover, online data transactions are inherently two-sided.

Presently, we analyzed the price charged by the data provider to the advertisers. But there

are cost of acquiring the data from individuals, publishers, or advertisers. Ultimately, the

cost of acquiring information for the data provider should be related to the value of privacy,

which may limit the availability of data or raise its price.
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Appendix

Proof of Proposition 1. Suppose the advertisersíoptimal action on the residual set is

given by q�(AC) = 0. The value of the marginal cookie is then given by max f0; v � cg,
which is increasing in v. We show that the value of information is strictly monotone in v.

Notice that adding higher-v cookies to the targeted set does not change the optimal action

on the residual set, because it lowers the expected value of a consumer v 2 AC. Thus, if

advertisers buy cookie v, they also buy all cookies v0 > v. Conversely, if the optimal action

on the residual set is given by q�(AC) = 1, the value of the marginal cookie is max f0; c� vg.
By a similar argument, the value of information is strictly decreasing in v: if advertisers buy

cookie v, they also buy all cookies v



proÖts as

� (v; q0) = v (q� (v)� q0)� c (m (q� (v))�m (q0)) ;

and notice that �v (v; q0) = (q� (v)� q0) : Therefore q�(v00) > q� (v0) > q0 implies � (v00; q0) >

� (v0; q0). Because the advertiser gains � (v00; q0) and loses � (v0; q0), it follows that the swap

strictly improves proÖts. An identical argument applies to the case of q�(v00) < q� (v0) < q0.

Finally, if vA 62 A, then a proÖtable deviation consists of not purchasing vA: advertisers

avoid paying a positive price, and the optimal action on the residual set does not change. �



condition yields

�00 (v) = (cm00 (q� (v)))
�1
:

Because q� (v) is strictly increasing, we conclude that �000 (v) > 0 if and only if m000 (q) < 0.�

Proof of Proposition 5. We Örst establish a property of the complete information demands

for advertising. Di¤erentiating m (q� (v)) with respect to v, we obtain

dm (q� (v))

dv
= m0 (q� (v))

dq� (v)

dv
=

m0 (q� (v))

cm00 (q� (v))
:

Therefore, the demand for advertising space is convex in v if m00 (q) =m0 (q) is decreasing in

q, i.e., m0 (q) is log-concave. Conversely, m (q� (v)) is concave in v if m0 (q) is log-convex.

(1.) We focus on the negative-targeting case A = [v; v1], but all arguments immediately

extend to the case of positive targeting. Now consider the publisherís revenues as a function

of p: The total demand for advertising is given by

M (A) =

Z v1

v

m (q� (v)) dF (v) + (1� F (v1))m (q� ([v1; �v])) :

Letting v̂ , E [v j v 2 [v1; �v]], we have

@M

@v1

= (m (q� (v1))�m (q� (v̂))) f (v1) + (1� F (v1))m0 (q� (v̂))
@q� (v̂)

@v̂

@v̂

@v1

= f (v1) (m (q� (v1))�m (q� (v̂))) + f (v1)
m0 (q� (v̂))

cm00 (q� (v̂))
(v̂ � v1) :

This expression is positive if and only if m00 (q) =m0 (q) is decreasing in q, i.e., if m (q� (v))

is convex. Because v1 is decreasing in p, the publisherís revenue c �M is decreasing in p if

m0 (q) is log-concave.

(2.) It is immediate to see that all results from part (1.) are reversed if m0 (q) is log-convex

(so that m00 (q) =m0 (q) is increasing in q and m (q� (v)) is concave in v). �

Proof of Proposition 6. (1.) We know from Proposition 1 that advertisers choose the

following targeted set:

A (c; p) =

(
[0;max fc� p; 0g] if c < 1=2;

[min fc+ p; 1g ; 1] if c � 1=2:
(20)
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Proof of Proposition 8. Under positive targeting, the marginal willingness to pay p (v; �)

for a targeted set A = [v; �v] is given by

p (v; �) , �� (v)� � (v; q0 (v; �)) ;

where

q0 (v; �) , q� (�EF [v0 j v0 � v] + (1� �)EF [v0]) :

The derivative of the inverse demand function with respect to the reach � is given by

@p (v; �)

@�
= � (v � cm0 (q0 (v; �))) q�0 (�) (EF [v0 j v0 < v]� EF [v0]) : (21)

The Örst two terms in (21) are positive: proÖts � (v; q0) are increasing in q because q0 (v; �) <

q� (v); the complete information quantity q� (�) is strictly increasing; and di¤erence of the

conditional and unconditional expected values is negative. Therefore, the marginal willing-

ness to pay p (v; �) is increasing in �. �

Proof of Proposition 9. (1.) Under joint targeting, we know the optimal action on the

residual set is given by �q for all k. It follows that the willingness to pay for v is independent

of the distribution. However, as k increases, both Fk (v1) and 1 � Fk (v2) increase, so the

quantity of data demanded increases.

(2.) Consider the inverse demand for data in the case of negative targeting:

p (v1) = v1 (q�(v1)� q� ([v1; �v]))� c (m (q�(v1))�m (q� ([v1; �v]))) :

As k increases, by second-order stochastic dominance, the conditional expectation E [v j v > v1]

increases as well. Therefore, q� ([v1; �v]) increases, and because q� ([v1; �v]) > q� (v1), the will-

ingness to pay p (v1)








