

Research question

Research question

How do firms adjust prices with costs?

- What if the cost change is firm-specific?
- What if it is an industry-wide cost change?
- Does competition matter and, if so, how?

Research question

How do firms adjust prices with costs?

- What if the cost change is firm-specific?
- What if it is an industry-wide cost change?
- Does competition matter and, if so, how?

These are useful questions to answer.

- Pass-through is central to wide range of analyses
- Theory predictions on pass-through are ambiguous
- Large empirical literature on pass-through...
 but little that accounts for oligopoly interactions

Summary of regression results

Summary of regression results

Main regression results

- Industry pass-through is complete, regardless of competitive conditions
- 2 Own pass-through is incomplete and decreases with competition
- 3 Cross pass-through effects how firms adjust prices with competitors' costs – account for this divergence

Summary of regression results

Main regression results

- Industry pass-through is complete, regardless of competitive conditions
- Own pass-through is incomplete and decreases with competition
- 3 Cross pass-through effects how firms adjust prices with competitors' costs – account for this divergence

Similar to theoretical predictions of Cournot model with convex demand curve (ten Kate and Niels 2005)

Why portland cement?

Why portland cement?

- Amendments to the NESHAP regulations on (local) air pollutants take effect September 2015
- 2 Cement accounts for 5% of global CO₂ emissions. How would cap-and-trade affect firms and consumers?
- Merger of Holcim and Lafarge proposed in April 2014.
 Number 1 and 3 in United States. Price effect?

Why portland cement?

Motivation for the empirical model

Objective: Obtain estimates of how each plant adjust prices with its costs and the costs of its competitors

Motivation for the empirical model

Objective: Obtain estimates of how each plant adjust prices with its costs and the costs of its competitors

Obstacle: Plant-level prices are not observed

Plant pricing in equilibrium

Linear approximation

$$D_{jt} =$$

quilil um

equiliber im price of plant j in period t

→ □ → ◆ ■

Plant pricing

Linear approximation to equilibrium price of plant *j* in period *t*

$$p_{jt} = \int_{jt} C_{jt} + \sum_{k \neq j} \int_{k \neq j} c_{kt} + x_{jt}^{0} + \int_{j} c_{kt} + c_{kt}$$

Plant pricing

Linear approximation to equilibrium price of plant *j* in period *t*

$$p_{jt} = \int_{jt} C_{jt} + \int_{k \neq j} \int_{k \neq j} c_{kt} + x_{jt}^{0} + \int_{j} + \int_{t} + \int_{j} t$$

- Model is general: prices based on equilibrium strategies, given a demand schedule and some competitive game
- Cannot be estimated due to curse of dimensionality
 (J J T pass-through parameters)

Restrictions on pass-through

Restrictions on pass-through

- Cross pass-through decreases in distance
 - Analogous to strategic complementarity decreasing in distance (e.g., Pinske, Slade and Brett 2002)

Restrictions on pass-through

- Cross pass-through decreases in distance
 - Analogous to strategic complementarity decreasing in distance (e.g., Pinske, Slade and Brett 2002)
- Own pass-through linearly affected by number, proximity of competitors

Pass-through can be estimated with regional price data and properly aggregated plant-level fuel costs data

Pass-through can be estimated with regional price data and properly aggregated plant-level fuel costs data

No regional boundaries are imposed on the competitive environment

Pass-through can be estimated with regional price data and properly aggregated plant-level fuel costs data

- No regional boundaries are imposed on the competitive environment
- All regressors constructed by aggregating plant-level variables to region level

Pass-through can be estimated with regional price data and properly aggregated plant-level fuel costs data

- No regional boundaries are imposed on the competitive environment
- 2 All regressors constructed by aggregating plant-level variables to region level
- Plants affect prices outside their region via cross pass-through

Stylized facts about cement production

Data span United States, 1974-2010

Empirical variation in fuel costs:

- Observable heterogeneity in kiln fuel efficiency
- 2 Time-series variation in fossil fuel prices
- Heterogeneity in choice of fossil fuel

Empirical variation in competitive conditions:

- Entry and exit
- Changes in gasoline prices

Table: Regression Results with the Baseline Specification

Table: Regression Results with the Baseline Specification

	OLS		FGLS		Bayesian	
	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Fuel Costs	0.99	1.01	1.02	1.16	1.1	1.31
	(0.23)	(0.23)	(0.15)	(0.24)	(0.17)	(0.16)
Fuel Costs Inverse Rival	-5.49	-4.14	-6.95	-5.09	-3.1	-3.75
Distance	(1.71)	(1.70)	(0.67)	(0.97)	(0.95)	(1.01)
Rival Fuel Costs Inverse	5.07	3.52	6.93	4.55	3.1	3.62
Rival Distance	(2.07)	(2.18)	(0.77)	(1.15)	(1.03)	(1.09)
Distance Metric	Miles Gas	Miles	Miles Gas	Miles	Miles Gas	Miles

Table: Regression Results with the Baseline Specification

	0	OLS		FGLS		Bayesian	
	(i)	(ii)	(iii)	(iv)	(v)	(vi)	
Fuel Costs	0.99 (0.23)	1.01 (0.23)	1.02 (0.15)	1.16 (0.24)	1.1 (0.17)	1.31 (0.16)	
Fuel Costs InF42							

Table: Regression Results with the Baseline Specification

	OLS		FGLS		Bayesian	
	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Fuel Costs	0.99	1.01	1.02	1.16	1.1	1.31
	(0.23)	(0.23)	(0.15)	(0.24)	(0.17)	(0.16)
Fuel Costs Inverse Rival	-5.49	-4.14	-6.95	-5.09	-3.1	-3.75
Distance	(1.71)	(1.70)	(0.67)	(0.97)	(0.95)	(1.01)
Rival Fuel Costs Inverse	5.07	3.52	6.93	4.55	3.1	3.62
Rival Distance	(2.07)	(2.18)	(0.77)	(1.15)	(1.03)	(1.09)
Distance Metric	Miles Gas	Miles	Miles Gas	Miles	Miles Gas	Miles

Table: Regression Results with the Baseline Specification

	OLS		FGLS		Bayesian	
	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Fuel Costs	0.99	1.01	1.02	1.16	1.1	1.31
	(0.23)	(0.23)	(0.15)	(0.24)	(0.17)	(0.16)
Fuel Costs Inverse Rival	-5.49	-4.14	-6.95	-5.09	-3.1	-3. 75 (1.01)
Distance	(1.71)	(1.70)	(0.67)	(0.97)	(0.95)	
Rival Fuel Costs Inverse	5. 07	3.52	6.93	4.55	3.1	3.62
Rival Distance	(2.07)	(2.18)	(0.77)	(1.15)	(1.03)	(1.09)
Distance Metric	Miles Gas	Miles	Miles Gas	Miles	Miles Gas	Miles

Application to merger analysis

Holcim and Lafarge are first and third largest cement firms

How to analyze the likely price effects?

Cournot competition with local markets

Application to merger analysis

Holcim and Lafarge are first and third largest cement firms

How to analyze the likely price effects?

- Cournot competition with local markets
- 2 Structural modeling (Miller-Osborne 2014 RAND)

Application to merger analysis

Holcim and Lafarge are first and third largest cement firms

How to analyze the likely price effects?

- Cournot competition with local markets
- Structural modeling (Miller-Osborne 2014 RAND)
- First order approximation (Jaffe-Weyl 2013, MRRS 2014)

Horizontal mergers create opportunity costs

- Horizontal mergers create opportunity costs
- 2 Low pricing of one partner forgoes profit from other partner

- Horizontal mergers create opportunity costs
- 2 Low pricing of one partner forgoes profit from other partner
- Magnitude of opportunity cost is "upward pricing pressure"

- Horizontal mergers create opportunity costs
- 2 Low pricing of one partner forgoes profit from other partner
- Magnitude of opportunity cost is "upward pricing pressure"
- Calculate first order effects of mergers based on (i) magnitude of opportunity costs and (ii) observed pass-through behavior

Table : Price Effects of a Holcim/Lafarge Merger

City	State	Pre-Divestiture Price Effect	Post-Divestiture Price Effect					
Holcim Plants								
Bloomsdale	MO .	6.6%	4.70%					
Holly Hill	SC	6.3%						
Theodore	AL	8.2%						
Catskill	NY	8.1%						
Hagerstown	MD	4.5%	4.2%					
Lafarge Plants								
Ravena	NY	7.4%	2.5%					
Calera	AL	3.7%						
Grand Chain	IL	3.1%	3.0%					
Sugar Creek	MO	4.0%						
Tulsa	OK	4.9%						

able : Price Effects of a Holcim/Lafarge Merger

City	State	Pre-Divestiture Price Effect	Post-Divestiture Price Effect				
Holcim Plants							
Foomsdale	MO	6.6%	4.70%				
l olly Hill	SC	6.3%					
heodore	AL	8.2%					
atskill	NY	8.1%					
Hagerstown	MD	4.5%	4.2%				
Lafarge Plants							
Ravena	NY	7.4%	2.5%				
Calera	AL	3.7%					
Grand Chain	IL	3.1%	3.0%				
Sugar Creek	MO	4.0%					
Tulsa	OK	4.9%					

Consumers bear the burden.

Consumers bear the burden.

- Producer surplus loss of \$17MM per dollar of carbon tax
- Consumer surplus loss of \$66MM per dollar of carbon tax

Consumers bear the burden.

- Producer surplus loss of \$17MM per dollar of carbon tax
- Consumer surplus loss of \$66MM per dollar of carbon tax
- About 80% of burden falls on consumers

Consumers bear the burden.

- Producer surplus loss of \$17MM per dollar of carbon tax
- Consumer surplus loss of \$66MM per dollar of carbon tax
- About 80% of burden falls on consumers
- Broad disbursement of revenues is justifiable

Consumers bear the burden.

Suppose margins of 35%, domestic demand elasticity of 1

Producer surplus loss of

In conclusion

In conclusion

Thank you