Industrial Reorganization: Learning about Patient Substitution Patterns from Natural Experiments

Devesh Raval Ted Rosenbaum Nathan Wilson

Federal Trade Commission

November 2015

Disclaimer:

The opinions expressed here are those of the authors and not necessarily those of the Federal Trade Commission or any of its Commissioners.

\Industrial Disorganization"

Many new empirical industrial organization studies forecast counterfactual outcomes [...], without a clear foundation in experience. [...] We'd expect such a judgment to be based on evidence showing that the simulation-based approach delivers reasonably accurate predictions. {Angrist and Pinske (JEP 2010)

Discrete Choice Demand - A Shaky Foundation?

Cornerstone of empirical IO

Models based on untestable assumptions

- IIA IIA
- Limited di erentiation among products

Little exogenous variation in choice sets

Natural Disasters Randomly Change Choice Set

Hospitals destroyed/closed by natural disasters

Internal Validity: Areas immediately surrounding relatively una ected

External Validity: Disasters in range of environments

Hospitals Good Industry to Examine Demand Models

Hospitals are important

- Hospital care more than 5 percent of GDP
- Hospital demand models used to address a variety of questions

Rich patient-level data helpful for identi cation

Several critiques

 Brennan and Guerin-Calvert, 2013; Doane, Froeb, and Van Horn, 2012; May, 2013

Experimental Validation in Other Settings

Vending Machines: Conlon and Mortimer (2013)

School Choice: Pathak and Shi (2014)

Schooling and Fertility: Todd and Wolpin (2006)

What you should take away from this talk

Heterogeneity in unobserved hospital quality is important

We provide guidance on which models to use

Use combination of semiparametric and parametric models

Widely used models lead to di erent policy conclusions

Model choice matters

Overview

- 2 Discrete Choice Models
- 3 Model Performance

4 Welfare

Natural Disasters

Location	Month/Year	Severe Weather	Hospital(s) Closed
Northridge, CA Americus, GA New York, NY	Jan-94 Mar-07 Oct-12	Earthquake Tornado Superstorm Sandy	St. John's Hospital Sumter Regional Hospital NYU Langone Bellevue Hospital Center Copey Island Hospital
Moore, OK	May-13	Tornado	Moore Medical Center

Tornado: Americus, GA

Tornado: Moore, OK

Superstorm Sandy: Manhattan, NY

Superstorm Sandy: Brooklyn, NY

Earthquake: Los Angeles, CA

Primitives

Hospitals j = 0; 1; ...; J, where 0 indexes the outside option. Patients i = 1; ...; N

Primitives

Hospitals j = 0; 1; ...; J, where 0 indexes the outside option. Patients i = 1; ...; N

Patient's choice of hospital is denoted h_i Patients choose hospital one time

Focus is Prediction and Welfare

Probability of choosing

Experimental Design

Estimate models on period before disaster

Some Models Match Market Shares Well Sumter

Examine Relative Model Performance

Examine Percent Improvement in RMSE over Indicator Model

Three Sets of Predictions:

- Aggregate Shares
- Aggregate Diversion Ratios: <u>y_{j:1} y_{j:0}</u> Vdest0
- Individual Predictions

Comparing Models: Aggregate Shares

Relative

Comparing Models: Aggregate Diversion Ratio

Comparing Models: Individual Predictions

Optimal Model Combination

$$y_{ij} = {}^{Semipar} \hat{y}_{ij}^{Semipar} + ... + {}^{CDS} \hat{y}_{ij}^{CDS} +$$

Weights non-negative, sum to one (Timmerman (2006)) Averaged across experiments

Comparing Models: Individual Predictions Model Combination

How Well Do Discrete Choice Models Perform?

Correlation Coe cient

Absolute

Robustness

Changing Choice Set Patients

Capacity Constraints

Case Mix

Medicare Insurance Only

Removing Destroyed Areas

Doctors

Counterfactual Hospital Mergers

Hospitals with higher WTP have higher market power

- Suppose hospital k and I are merging
- Change in WTP

$WTP_{(k;l)}(S) WTP_k(S) WTP_l(S)$

approximates change in market power from merger

Counterfactual Hospital Mergers

Hospitals with higher WTP have higher market power

- Suppose hospital k and I are merging
- Change in WTP

$WTP_{(k;l)}(S) WTP_k(S) WTP_l(S)$

approximates change in market power from merger

We examine all possible counterfactual mergers (95 in total)

Meaningful Predicted Welfare Di erences Across Models SD / Mean

Meaningful Predicted Welfare Di erences Across Models Correlation, RMSE and Percent Change in WTP

Conclusion

In general, structural analysis and credible identi cation are complements.

Conclusion

In general, structural analysis and credible identic cation are complements. [...] That this should not be an either-or proposition seems quite obvious to us.

(Nevo and Whinston (JEP 2010)

Future Work: Examining Machine Learning Models