Mergers in Innovative Industries: The Role of Product Market Competition

Guillermo Marshall

Department of Economics

University of Illinois at Urbana-Champaign

Álvaro Parra
Sauder School of Business
University of British Columbia

Motivation

- Innovation has become relevant for merger analysis.
 - Gilbert (2006): 40% of mergers between 2003-05 in "R&D industries".
- Are the current current guidelines appropriate?
 - Is price the only relevant object in innovative industries?
 - If a merger increases incentives to innovate, short-run price effects may be compensated for.
- "Competition and innovation" are mentioned in the guidelines:
 - Less competition may reduce incentives to perform R&D.
 - This argument was used in the Pfizer–Wyeth and Manitowoc–Enodis mergers.
 - Conflicts with evidence of a non-monotonic relationship between competition and innovation.
 - How does this evidence play in practice?

The role of product market competition

- Firms perform R&D to gain a competitive advantage or to capture a larger share of the market.
 - Intel and AMD were doubling CPU performance every 7 quarters in the 1993-2004 period (Goettler and Gordon, 2011).
- Product market payoffs determine the value of an innovation.
 - Ultimately firms innovate to obtain more profits.
- Product market payoffs are affected by competition.
 - Number of competitors; demand conditions; quantity, quality or price competition.
- Thus: Product market competition affects R&D incentives.

This paper

- Dynamic framework to analyze mergers in innovative industries.
 - Patent race model of sequential innovations.
 - No merger-specific R&D efficiencies → Focus on role of product market competition.
- Study the relation of market concentration and R&D outcomes.
- Provide conditions —based on static competition— for when a dynamic and static merger approval are aligned.
 - When rejecting/approving a merger based on price effects is aligned with rejecting/approving based on price and innovation effects.
- Derive a condition for when a static and dynamic criteria are not aligned: despite price effect, when does a merger increase long-run consumer surplus due to its effect in innovation?

Literature

- Discussion of the interaction between innovation and competition stems from Schumpeter (1942).
- No formal analysis on the effects of mergers on innovation.
 - Gilbert and Sunshine (1995) and Katz and Shelanski (2006) discuss limitations of merger guidelines for innovative industries.
- Aghion et al. (2005) find an empirical non-monotonic relation between competition and innovation.
 - Duopolistic model where substitution plays the role of competition.
- Dynamic Competition Policy.
 - Gowrisankaran (1999, 2004), Hopenhayn et al. (2006), Nocke and Whinston (2010, 2013), Parra (2016), Segal and Whinston (2007).
 Mermelstein et al. (2015), Igami and Uetake (2016)

Road map

- Model
- Market structure and Innovation
- Merger analysis
- 4 Lessons

Model

Firms compete through innovations and in the product market

Baseline model

Consider a patent race model with an infinite sequence of innovations:

- Time is continuous and future is discounted at a rate r.
- There are n + 1 "large" firms competing in both the product market and developing innovations.
 - · One market leader: the firm with the latest technology.
 - n followers: 2nd-best technology, investing to become the new leader.
 - The leader earns p_n^l and each of the n followers $p_n^f < p_n^l$.
 - Observe that profits depend on n
 - Infinite patent protection —precludes imitation— until replaced by better technology.
- m "research labs" that only perform R&D.
 - Research labs do not compete in product market.
 - Sell innovations using 2nd-price auctions.

Baseline model

The *n* followers and *m* research labs invest in R&D.

- Innovate at a Poisson rate: x.
- Flow cost of R&D: c(x) —is strictly convex.
- Arrow's replacement effect + stationarity: leader performs no R&D.

This model accommodates:

- Various form of product market competition.
 - Firms competing in price, quantity, or quality.
- Different types of innovation
 - · Quality ladders: discrete choice demand.
 - Cost innovation: hyperbolic demands.
 - Creative destruction: Technology replaces the previous one.

Model interpretation

Value functions satisfy

leader:
$$rV = p_n^l + l(W - V)$$

follower: $rW = \max_{x_i} p_n^f + x_i(V - W) - c(x_i)$.
lab: $rL = \max_{y_i} \{y_i(V - W) - c(y_i)\}$.

where $I = a_i x_i + a_i y_i$ is the pace of innovation.

Value functions and investments rates are a function of n and m.

Proposition

There is a unique symmetric equilibrium. In equilibrium $x_i = y_i = x^*$ and

$$c'(x^*) = V - W.$$

Model interpretation

Value functions satisfy

leader:
$$rV = p_n^I + I(W - V)$$

follower: $rW = \max_{x_i} p_n^f + x_i(V - W) - c(x_i)$.
lab: $rL = \max_{y_i} \{y_i(V - W) - c(y_i)\}$.

where $I = a_i x_i + a_j y_i$ is the pace of innovation.

Value functions and investments rates are a function of n and m.

Proposition

There is a unique symmetric equilibrium. In equilibrium $x_i = y_i = x^*$ and

$$c\left(x^{\ast}\right) =V-W.$$

Market structure and R&D

How a change in market structure affects the pace of innovation?

Innovation incentives

- A merger between large firms affects product market competition and innovation competition.
- A key element in our analysis is the profit gap between the leader and a follower, $Dp_n \equiv p_n^l p_n^f$.
 - This profit gap is what incentivizes R&D (i.e., it determines V W).
 - The profit gap is a function of n.
- Innovation competition affects R&D directly through n+m and indirectly determining V-W.
- To understand these forces, we first study how an isolated change in product market or innovation competition affects market outcomes.

Innovation incentives

Proposition (Product and innovation market competition) Competition affects innovation outcomes through two channels:

- i) Product market competition: Fix n and m, an increase in the profit gap, Dp_n , increases firms investments, x^* , and the pace of innovation, I.
- ii) Innovation competition: A decrease in the number of research labs, m, increases firms investments, x*, but decreases the pace of innovation, I
 - A merger creates both effects at the same time.
 - These effects can reinforce each other or collide.

Innovation incentives

Proposition (Product and innovation market competition)

Effects of market concentration on R&D

The elasticity of a follower's R&D level with respect to the number of competitors summarizes R&D effects

Proposition: Concentrating the industry leads to an increase the pace of innovation iff

$$e_{X^*,n}=-\frac{dx^*}{dn}\frac{n}{x^*}>\frac{n}{n+m}.$$

We provide examples for the following cases:

Merger analysis

Can we incorporate the previous result into merger analysis?

Sufficiency of static merger analysis

Proposition (Necessity of decreasing differences)

A profit gap, Dp_n , that is weakly decreasing in n, is necessary for a merger to increase the pace of innovation. If the number of research labs m is large enough, a decreasing profit gap is also sufficient.

Under decreasing differences:

- the product market competition and innovation competition effects collide.
- If R&D is in some sense "atomistic", approving a merger using a static merger criterion is aligned with approving it using a dynamic criterion

So, can we tell more about Dp_n

- We know that under homogeneous price competition Dp_n is decreasing, i.e. concentration leads to less R&D.
- In general, we cannot tell.
- In the paper, we give examples of Cournot competition with log linear demands $q = (A/P)^{1/s}$ and can go either way.
- Importance of demand specification

Dynamic Merger analysis

When criteria are not aligned

Dynamic merger analysis

Unfortunately, the static and the dynamic merger review criteria are not always aligned.

To assess whether a merger is desirable in the dynamic sense we need to impose further structure.

- The flow of consumer surplus, cs_n (decreases in n).
- Each innovation increases the flow if consumer surplus in d_n

The expected discounted consumer surplus of the consumers in this market is given by

$$rCS = cs_n + I \frac{d_n}{r}$$

Dynamic merger analysis

Proposition (Dynamic merger analysis)

$$e_{x^*,n} > \frac{n}{n+m} + \frac{rn}{d_n I} \frac{dcs_n}{dn} + \frac{dd_n}{dn} \frac{n}{d_n}.$$

where $dCS_{0,n}/dn$ is the deriv8k/PaL7s theoferiv8consu(ge surplus j/Towamiatera

Lessons for new guidelines

- Current guidelines: R&D is increasing in the number of firms.
- · This is not necessarily true.
- The price effects that hurt consumers in the short run may more than compensate consumers in the long run by boosting innovation incentives.
 - This is true even if the merger does not produce R&D efficiencies.
- How firms compete is key for understanding the impact of a merger on innovation incentives.
- We can use these results towards building a structural empirical framework on how to asses merger in innovative industries.

Thank you!