Dynamic Monopsony with Large Firms and Noncompetes

Axel Gottfries¹ Gregor Jarosch²

¹University of Edinburgh

²Duke University

FTC Micro Conference,

O develop a generalized job ladder framework with wage posting

- rich and fexible, yet tractable
- I natural laboratory for labor mobility themes
- application to noncompete agreements
 - I theoretical: can sharply for

framework for anti-competitive labor market practices

- frictional labor market with wage posting and turnover due to on-the-job search (Burdett-Mortensen (98))
- several new features:
 - Iarge employers
 - can speak to concentration, mergers, ...
 - ecreasing returns
 - can endogenize size and market structure
 - Some market-level product demand curve (two-sided market power)
 - I less restrictive, wider range of cases
 - hiring cost, rather than vacancy cost
 - I more tractable (and relevant)

natural lab for competition issues related to worker mobility and turnover

- modern/dynamic monopsony (Burdett-Mortensen (98), Manning (03, 11,...), Dube et al (19,20))
- neoclassical monopsony (Robinson (33), Card et al (16), Berger et al (22))
- size and market structure with frictions: Jarosch et al. (23)
- non-competes in a frictional setting w/ bargaining: Shi (22)

model (w/o noncompetes)

standard pieces: random search, on-the-job-search, posted wages (BM)

- I relative search e f ciency of employed s
- I frms commit to pay posted wage
- I may post mix of wages, cdf F_j (w)
- workers become unemployed at rate , then receive fow utility b
- choose a reservation wage, otherwise just foat up the job ladder
- l cont. time, discount rate r
- I restrict to stationary equilibria

- hiring technology: frms pay a cost c per hire
 - l always obtain desired size, no vacancy cost
 - but lose workers to unemployment and competitors, so costly turnover
 - workers contact frm i with endogenous frequency i (s i)
- granular market structure: M large frms
- d.r.s: frm i with employment N produces homogeneous output xiN
- reverse-engineer downward sloping market-level product demand

rm problem in words

frm choose

- intensity at which workers contact their job openings, i
- distribution of posted wages F_i(w)
- to maximize revenue axiemige /T1_31 Tf 2.1140 Td T220 Td (maximize) Tj

I despite added dimensions remains highly tractable

- w/ symmetric frms: can solve model by hand
- | w/ heterogeneous frms (x_i;c_i): simple I

I

more concentration can, but need not hurt workers

- PE: frms do not compete with themselves, fewer competitors lower pay
- GE: lower turnover drives up labor demand

- m marginal revenue product of labor
-) optimal hiring + user cost equated across all wages posted:

$$\frac{P \stackrel{m}{r} }{r + + \frac{P}{j \notin i} s_{j} (1 \quad F_{j} (w))} = c_{i}$$

- I Mark-down m=w is endogenous and covers turnover cost
- must rise if turnover (competition) rises

quit elasticity

| quit elasticity often

non-competes: theory

- Stigler (61,62) & McCall (1970): Study repeated sampling with dispersed prices/wages, characterize reservation values
- Diamond (1971): Can't sustain dispersed prices for homogeneous products/workers in equilibrium (\Diamond Paradox'')
- Burdett & Mortensen (98): Can't sustain any mass in job ofer distribution in a job ladder model.
 Why? Deviation, slightly above) Competition

adding non-competes to the model

I model non-competes

impact of non-competes

A. Wage ofer distribution

B. Value ofer distribution

I

when all frms can ofer non-compete: $w_c = w_r = b$

) illustrates that non-competes, when wide-spread, can sharply depress wages by eroding job-ladder competition

non-competes | welfare

two opposing forces re welfare

- show that frms w/ noncompetes have more employment, but same d.r.s. production function) misallocation
- e however, competition here is wasteful
 - ine f cient worker churn yields wage gains but socially costly
- a priori unclear whether a ban yields e f ciency gains
 - numerically, get ban slightly reduces welfare
 - caveat
 - I misallocation (workers! frms) if job ladder improves allocation (here: doesn't), then additional costs of shutting it down

quantitative analysis of noncompetes

fairly standard job ladder model to calibrate (EU, EE, UE,..)
set = :64Calibrate64

- calibrate/validate via empirical studies
- Prager & Schmitt (21) study hospital mergers
 - I pick up response of wages and employment
 - comment: framework can straightforwardly be used for merger analysis
- Ipsitz & Starr (20) study ban of noncompetes in Oregon
 - pick up response of wages, turnover, spillovers

main application: banning non-competes

- FTC: 20% of US workforce under non-compete, proposed blanket ban
 many state level restrictions (recently, NY), lots of discussions in Europe
- surprisingly common for low-skilled workers (where posting seems natural and human capital and business stealing issues seem less relevant)
- surprisingly uniform across frm types
- baseline calibration: set M = 10 (symmetric) and k = 2,

baseline results: banning non-competes

	Baseline	
Share non-comp.	0:212	
log(E[w])	0:04	
u	1:198	
log(output)	0:008	
Utility	0:009	
log(jtj)	0:354	
log(w _{nc})	0:067	
log(w _{rest})	0:032	

- I large wage and mobility increases
- I large spillovers
- employment and output slightly down due to rise in turnover cost (misallocation channel dominated)

training cost

	Baseline	c/E[w]=5
Share non-comp.	0:212	0:226
log(E[w])	0:04	0:05 05

demand elasticity

	Baseline	= 0:5	= 5
Share non-comp.	0:212	0:224	0:234
log(E[w])	0:04	0:019	0:001
u	1:198	1:592	1:965
log(output)	0:008	0:011	0:013
Utility	0:009	0:01	0:01
log(jtj)	0:354	0:345	0:335
log(w _{nc})	0:067	0:046	0:027
log(w _{rest})	0:032	0:011	0:007

- banning non-competes turnover cost
- if this cannot be (partially) passed into prices, gains to workers evaporate

	Baseline	k=5	k=c/E[w]=5
Share non-comp.	0:212	0:513	0:528
log(E[w])	0:04	0:113	0:168
u	1:198	3:208	4:602
log(output)	0:008	0:022	0:032
Utility	0:009	0:022	0:039
log(jtj)	0:354	1:066	1:018
log(w _{nc})	0:067	0:126	0:198
log(w _{rest})	0:032	0:1	0:136

I logic: Diamond restored

heterogeneity

- I conclude with a more full blown exercise
- frms difer in productivity and hiring cost
- study case where low productivity / high productivity frms use noncompetes

	Baseline	High	Low
Share non-comp.	0:212	0:186	0:207
log(E[w])	0:04	0:069	0:011
u	1:198	0:912	0:933
log(output)	0:008	0:007	0:003

banning non-competes: quantitative lessons

- wage gains of about 4%
- Iarge wage gains if 1) large frictions, 2) high coverage, 3) low product demand elasticity
- typically welfare down, but small losses compared with wage gains
 can \protect" workers from this practice at low cost (?)

- use same framework to think about wage-fxing cartels
- I main finding: outside competition determines harm and proftability.
- hence, wage losses large / cartels more likely when
 - I market is concentrated
 - labor market has slack
 - the span of control is small
 - product demand is elastic
 - cartel also colludes in the product market

conclusion

Large rms in the labor market

Large frms can, in principle, a fect

- workers' actions (reservation)
 - assume that workers do not observe and do not learn